Adaptive estimation of the thermal behavior of CPU-GPU SoCs for prediction and diagnosis

  • Oussama Djedidi 
  • b Nacer K. M’Sirdi 
  • c Aziz Naamane 
  • a,b,cAix Marseille University, CNRS, LIS, SASV, Marseille, France
Cite as
Djedidi O., M’Sirdi N. K., Naamane A. (2019). Adaptive estimation of the thermal behavior of CPU-GPU SoCs for prediction and diagnosis. Proceedings of the 12th International Conference on Integrated Modeling and Analysis in Applied Control and Automation (IMAACA 2019), pp. 93-98. DOI: https://doi.org/10.46354/i3m.2019.imaaca.012

Abstract

This paper proposes a dynamic behavioral model for temperature variations of systems on chips (SoC) in embedded systems. We use identification techniques (ARMAX modeling) to construct a data-driven online temperature model that estimates the temperature according to the CPU and GPU frequencies, the used RAM and the power consumed by the chip. Furthermore, we used two the Recursive Least Squares (RLS) to estimate the parameters of the ARMAX model. This method allows us to update the parameters of the model online in case of a change in the system or its characteristics. Finally, we validate the temperature model and compare between booth estimation methods.

References

  1. AnTuTu. , 2019. AnTuTu Benchmark - Android Apps on Google Play Retrieved from https://play.google.com/store/apps/details?id=com .antutu.ABenchMark
  2. Djedidi, O., Djeziri, M. A., and M’Sirdi, N. K. , 2018. Data-Driven Approach for Feature Drift Detection in Embedded Electronic Devices. IFACPapersOnLine, 51(24), 1024–1029.
  3. Faggin, F., Hoff, M. E., Mazor, S., and Shima, M. , 1996. History of the 4004. IEEE Micro, 16(6), 10–20.
  4. Freescale Semiconductor Inc. , 2012a. i.MX 6 Series Thermal Management Guidelines
  5. Freescale Semiconductor Inc. , 2012b. i.MX 6SoloX Automotive and Infotainment Applications
    Processors - Data Sheet. Freescale Semiconductor
  6. Futuremark Oy. , 2019. 3DMark - The Gamer’s Benchmark - Android Apps on Google Play
    Retrieved from https://play.google.com/store/apps/details?id=com .futuremark.dmandroid.application.
  7. Landau, I. D., and Gianluca, Z. (Eds.). , 2006. System Identification: The Bases BT - Digital Control
    Systems: Design, Identification and Implementation (pp. 201–245). London: Springer London.
  8. Landau, I. D., M’Sirdi, N., and M’Saad, M. , 1986. Techniques de modélisation récursive pour
    l’analyse spectrale paramétrique adaptative. Revue de Traitement Du Signal, 3, 183–204.
  9. Li, T., Yu, G., and Song, J. , 2018. Minimizing energy by thermal-aware task assignment and speed scaling in heterogeneous MPSoC systems. Journal of Systems Architecture, 89, 118–130.
  10. Löfwenmark, A., and Nadjm-Tehrani, S. , 2018. Fault and timing analysis in critical multi-core systems: A survey with an avionics perspective. Journal of Systems Architecture, 87, 1–11.
  11. Mercati, P., Paterna, F., Bartolini, A., Benini, L., and Rosing, T. Š. , 2017. WARM: Workload-Aware
    Reliability Management in Linux/Android. IEEE Transactions on Computer-Aided Design of
    Integrated Circuits and Systems, 36(9), 1557– 1570.
  12. Niu, L., and Zhu, D. , 2017. Reliability-aware scheduling for reducing system-wide energy consumption for weakly hard real-time systems. Journal of Systems Architecture, 78, 30–54.
  13. Thales. , 2017. What is new on Avionics 2020? | Thales Aerospace BlogThales Aerospace Blog Retrieved from http://onboard.thalesgroup.com/newavionics-2020/.
  14. Wang, K. J., Sun, H. C., and Pan, Z. L. , 2017. An analytical thermal model for Three-Dimensional
    integrated Circuits with integrated micro-channel cooling. Thermal Science, 21(4), 1601–1606.
  15. Zhou, J., Yan, J., Cao, K., Tan, Y., Wei, T., Chen, M., … Hu, S. , 2018. Thermal-aware correlated two-level scheduling of real-time tasks with reduced processor energy on heterogeneous MPSoCs. Journal of Systems Architecture, 82, 1–11.