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ABSTRACT 
The automation of rail systems is a major challenge for 
the development of this mode of transport. This 
automation must affect all the functions of the control 
system and not just the replacement of train drivers. This 
study proposes a component approach for modelling 
control functions based on Colored Petri Nets. This 
component approach masks the complexity of the system 
components and their functions from the designers of a 
rail system. In this work we also propose a new formal 
verification method based on the construction of a 
reduced reachability graph of a global model. This 
approach makes it possible to verify the main properties 
of the components necessary for their implementation in 
software libraries that can be used by railway system 
designers. 

Keywords: Discrete Event Systems, Colored Petri Net, 
formal modelling and verification, Automatic Train 
Control.  

1. INTRODUCTION
The automation of rail systems is a major challenge for 
the development of this mode of transport with regard its 
competition with road and air transport. This study 
proposes to use a component approach to facilitate the 
design of railway systems. This requires to develop 
generic component libraries. Assisted by such libraries, a 
designer can model a rail system by instantiating the 
generic components of his library and specifying the 
interactions between these components. This requires to 
check that each generic component works properly. 

This work proposes to use Jensen’s Colored Petri 
Nets (CPN hereafter) for modeling railway systems. 
They allow to use the modularity and the parametric 
modeling to build generic components. These generic 
components can be instantiated to build a global model.  
This paper is structured as follows. In the second section, 
we will present how actual railway systems operate and 
the main functions of an automatic control system. In 
section 3, we will propose a decentralized control 
architecture for the implementation of automatic control 

of railway systems. In the fourth section, we will present 
our modeling principles based on the concept of Petri 
Nets modules, with modules whose operation depends on 
parameters. In the fifth section we will propose a 
modeling of some of the components presented in the 
third section. The sixth part focus on the verification of 
our generic components. In particular, we will introduce 
a new semantics of PN interpretation in order to reduce 
the size of reachability graphs. Section 7 gives a case 
study to illustrate our approach. We will end with a 
conclusion and perspectives. 

2. STATE OF ART OF AUTOMATIC TRAIN
CONTROL

2.1. Description of a railway system and its 
operation in traditional mode 

A railway system can be abstracted as consisting of 
railway nodes and railway lines. There are two categories 
of railway nodes: stations and junctions. A rail junction 
consists of switches end track elements that establish 
routes for routing trains. Stations have platforms that 
allow a train to stop for passenger loading/unloading. 
This is what differentiates them from junctions (Lusby, 
Larsen, Ehrgott, & Ryan, 2013). Rail lines are used to 
connect stations together. But several railway lines may 
cross at junctions allowing trains to move from one line 
to another to reach a destination station. Lines generally 
have two one-way tracks to connect two nodes in both 
directions of traffic (round trip). Normally, all trains on a 
track move in the same direction of travel. Some lines 
may have bidirectional track portions. Within a railway 
node, some track sections can also be bidirectional.  

Safety is one of the main criteria for the proper 
functioning of a railway system. To do this, it is 
necessary to avoid collisions.   
In order to ensure the proper functioning of railway 
systems, three categories of human operators take 
decisions and manually trigger control operations: train 
drivers, line regulators and railway dispatchers.  
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The role of the train driver is to control the advance of 
his train by respecting the signaling (lights and speed 
limits). He has no control over the train's itinerary, which 
depends on the other two operators. Today, in modern 
control and signaling systems, the driver operates under 
the control of an automated train protection system 
(ATP). This system is used to guarantee safety, 
especially on the lines. It can trigger an emergency stop 
of the train if necessary. The driver performs other 
functions such as opening and closing train doors.  
The function of the line regulator is to regulate the traffic 
of the trains on the line it controls. To do this, it can 
switch a slow train onto a bypass track to allow a faster 
train to pass it. The slow train then returns to the main 
track as soon as possible.  
The dispatcher role is to decide which trains pass through 
the node he controls. It establishes a route for each train. 
It can be assisted by a computer for assigning a route to 
a train. By default the signal at the node input is closed 
(red light). When the signal is open (green light), the train 
can enter the node (Lusby, Larsen, Ehrgott, & Ryan, 
2013). 

2.2. Automatic train control systems 
Current rail systems are not very automated but there are 
many automated metro lines in the world because they 
are simpler. The main automatic control system (ATC) 
used by metros are Communication-Based Train Control 
also called CBCT (IEEE Std 14741, 2004). One of the 
main features of this system is the use of radio 
communication between trains and ground 
infrastructure. This system has inspired ERTMS Level 2 
which is based on the GSMR communication system 
(European Railway Agency, 2016). This study assumes 
the use of such type of communication.   
An automatic train control system is actually divided into 
three subsystems (Yin, et al., 2017): the train operating 
system (ATO), the automatic train protection system 
(ATP) and the train supervision system (ATS).  

Figure 1: ATC structure (Yin, et al., 2017) 

The function of the ATO is to replace the driver on board 
trains. This is the function to be developed as part of the 
autonomous train. It is responsible for controlling the 
advance (traction) and stopping of trains (braking) 
according to its operating modes and speed limits. It is a 
function that is both on board and on the ground (Figure 
1). Indeed, the trackside controllers will calculate the 
train's movement authorizations according to the 
limitations due to its location in the network but also 

according to the position of the other trains in the 
network. 
The role of the ATP function is to monitor the execution 
of train operations. In manual driving mode, it controls 
the commands given by the driver to the train. In 
automatic mode it controls the orders of the ATO. The 
ATP will directly control the emergency braking. It is 
also a function that is both on board the train and on the 
ground (Figure 1). The majority of current rail control 
and signaling systems are based on the blocks’ technique. 
This technique guarantees safety on the tracks of a line. 
Indeed, each track is divided into electrically isolated 
blocks. Safety requires that there be only one train per 
block. In actual systems, the safety implemented by ATP 
is based on the concept of interlocking. Also, there are 
many studies on the verification of interlocking by 
formal methods including CPN (Vanit-Anunchai, S., 
2014). ATP is a critical function from safety point of 
view.  
The ATS function is a function of the ground system 
(Figure 1). It monitors that the train movements are in 
accordance with the planned scheduling. It is also 
responsible for the dynamic routing of the train for 
crossing railway nodes. 

2.3. Conclusion 
More specifically, this work is a contribution to the 
implementation of sub-functions of the ATO (train 
movement authorization) and ATS systems. For this, we 
will be inspired by ERTMS/ETCS level 2 which is in fact 
an ATP function for protecting the movement of a train 
on a railway track (European Railway Agency, 2016). In 
next sections, we propose a new architecture and a 
methodology to develop automatic control system. 

3. DECENTRALIZED ARCHITECTURE FOR
THE CONTROL OF A RAILWAY SYSTEM

This study concerns the management of multiple trains 
in a railway network with a full automation of the system. 
To propose a new architecture, we are going first to 
propose a structural and a functional decomposition of a 
railway network. A top-down approach is used to 
conduct this decomposition for a railway system by first 
considering separately the two points of view and then 
by mapping together the elementary components of the 
system with their functions. 

3.1. Structural decomposition 
A railway network is a complex system. Its control is 
distributed in several components of the ground 
infrastructure and onboard the trains. In order to be able 
to model such a system, a structural decomposition is 
necessary. Figure 2 summarizes the proposed 
decomposition. 
It is important to notice that the structure of each 
subsystem (stations, junctions and railway tracks) is 
different depending on the railway network 
requirements, but the basic components (block, switch, 
track section, balise and track circuit) used to implement 
them are generic. 
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Figure 2: Structuration Decomposition of a Railway 
Network 

3.2. Functional Decomposition 
Because this study aims to propose a methodology for 
automatic control, the structural decomposition also 
shows the different controls centers that allow 
implementing a decentralized control of a railway 
system.  
At the top of the hierarchy, there is the Centralized 
Traffic Control (CTC hereafter). The CTC checks in real 
time that the planned transport plan is implemented 
throughout the network. It has a global but macroscopic 
view of rail traffic in the system it controls. Thus, it 
defines and updates the itinerary of each train. Each 
itinerary is defined in terms of departure station, arrival 
station (final destination), intermediate nodes through 
which the train will pass. The arrival dates of a train at 
each node of its itinerary are defined by the planned 
transport plan.  The CTC regularly receives feedback 
from the lower-level control centers that execute locally 
this plan. It calculates the differences between the 
executed and the planned plan and sends back to local 
centers, updated local transport plans. It implements rail 
traffic supervision that is an ATS function. 
The types and number of local controllers are consistent 
with the breakdown of the infrastructure into railway 
nodes and lines composed of tracks. A local control 
center is associated with each railway node. Each 
junction is controlled by the JTC (Junction Traffic 
Controller) whose main function is to implement 
automatic train routing (an ATS function) within the 
node. Taking into account the local planned transport 
plan (list of trains to cross the junction in a time slot), the 
JTC allocates in real time the resources necessary for 
each train arriving at the node to set its route. It is based 
on a planned scheduling of traffic to cross the junction in 
accordance with the local transport plan received from 
the CTC. In case of fault, the local transport plan is 
updated. If this update does not absorb all the disruptions, 
the CTC is informed so that more global actions can be 
taken to find a solution. Trains can be slowed down, 
accelerated or even their itinerary modified. The JTC is 
also responsible to set up the train route (it is an ATO 
function) and to give to each train its movement 
authorization inside the junction (it is an ATP function).  
The stations are controlled by the STCs (Station Traffic 
Controller). STCs implement automatic train routing like 

JTCs. In addition, they must manage the assignment of 
platforms to trains that stop at the station. 
The Radio Bloc Center (RBC) operates in the same way 
as in ERTMS/ETCS level 2 (European Railway Agency, 
2016). Each train regularly sends its position to it. Taking 
into account the position of each train on the track and 
their time constraints, the RBC calculates their respective 
movement authorizations (authorized travel distance and 
speed profile) and regulates the traffic of the trains on the 
line. Movement authorizations are transmitted to trains 
in response to their requests for movement authorization. 
The fourth local control center is onboard in each train. 
It is implemented by the main computer of the train 
called EVC (European Vital Computer). It has a role 
similar to that defined in the standard (European Railway 
Agency, 2016). It implements both the ATP and ATO 
functions of the train. The role of this computer is to 
control the train's advance (an ATO function) by 
respecting the movement authorizations (an ATP 
function) transmitted by the RBC when it is on a track. 
When it must cross a node, it communicates with the 
controller of the node (JTC or STC) who gives it his 
movement authorizations in accordance with the route it 
has assigned.  

3.3. Mapping Relations 

Figure 3: Mapping Relations from Control Viewpoint 

Figure 3 depicts the relations mapping between the 
control components of a railway network and the 
different functions hold by each of them. On the left of 
the figure, the green nodes represent the functional 
decomposition of a Railway Network from control 
viewpoint. On the right of Figure 3, the yellow square 
model the main control components. As an example, one 
can see that STC is associate with platform allocation and 
automatic train routing that are ATS sub-functions and is 
also associate with MA Management and Position/Speed 
Management that are ATP sub-functions.  
In the rest of the paper, we will focus on the design of 
control functions of JTC, RBC and EVC components. 

4. MODELING OF DISCRETE CONTROL
COMPONENTS

The objective of this part is to show how to model 
components in order to allow the modelling of a rail 

Railway Network

Infrastructure Train

Balise (Track)

Block

JunctionStation Railway Track

Track Section

Balise 

(node)

Switch 

(Track)

Switch 

(node)

Track circuit 

(node)

Track circuit 

(Track)

CTC

RBC

EVC

JNDSND

Position/Speed 
Management

ATS

Automatic Train 
Routing 

Computation of 
trains’ itineraries

Timetable

ATO

Train movement

Door 
opening/closing

ATP

MA 
Management

CTC

RBC

EVC

STC

JTC

<associate>

<associate>

<associate>

<associate>

Functional Decomposition Structural Decomposition

<associate>

<associate>

<associate>

<associate>

Mapping relations

Platform 
Allocation

<associate>

<associate>

Proc. of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2019 
ISBN 978-88-85741-31-7; Bruzzone, Dauphin-Tanguy and Junco Eds

107



control system. We focus here on the train EVC, RBC for 
line control and STC for junction control.  

4.1. Colored Petri Nets 
4.1.1. Introduction 
For DES, there are three types of formal models 
(Cassandras and Lafortune, 2008): regular languages, 
automata and Petri Nets (PN hereafter). PN were defined 
in 1962 in the thesis of the German mathematician Carl 
Adam Petri. He then showed that it was the best 
formalism to model DES characterized by several 
subsystems evolving in parallel and sometimes having to 
be synchronized. The initial formalism is called, 
Places/Transitions Petri nets (notation P/T-nets). But 
since that time, many abbreviations or extensions of PN 
have been proposed by other authors. Colored Petri Nets 
(CP-nets hereafter) are basically an abbreviation for P/T-
nets. It means that any colored model can be unfolded to 
find the equivalent P/T-nets model. Coloration consists 
of defining sets of objects. Thus, the model's tokens can 
model real-world objects. With P/T-nets, it is necessary 
to make a specific net for each object. CP-nets make it 
possible to factorize the behavior common to several 
objects into a single model of the same size as the model 
of an object in the case of P/T-nets. Thus, they make it 
possible to gain in concision and thus to reduce the size 
of the model representing the set of physical objects. 

Figure 4: Example of two trains on a railway track 

To illustrate the power of expression of Colored Petri 
Nets, consider the example given in Figure 4. This 
example defines two trains moving on a railway track 
composed of N blocks. N is a parameter that represents 
the length of the track in number of blocks. Figure 5 
illustrates the modelling of this system in P/T-nets. In this 
case, in order to distinguish between the two trains, a 
model must be constructed for each train. The overall 
model of the system is therefore composed of 2N places 
and 2N transitions. The corresponding automaton would 
be composed of N2 states illustrating the combinatorial 
explosion of this formalism. 
Figure 6 illustrates the same problem modeled in CPN 
which is an extension of CP-Nets (Jensen et al., 2007). In 
this case, the problem parameters can be specified by 
constants (NTr for the number of trains and N for the 
number of blocks).  

Figure 5: P/T-nets of the two trains on a track 

This allows to define train identifiers (Tr(1) is the train 
identifier of train 1 and Tr(2) is the identifier of train 2) 
using the ML language of CPN Tools. Similarly, we can 
specify the block identifiers on which the trains are 
positioned (B(2) and B(5) respectively). CPN Tools' ML 
language allows to define composite types such as 
OccBlock which specifies the blocks occupied by a train. 
The definition of these types allows to fold the P/T-nets 
of Figure 5 and to obtain the CP-nets of Figure 6 
composed of 1 place and 1 transition. It can be seen that 
this model is much more compact than the one obtained 
with P/T-nets or finite state automaton. However, it 
requires the creation of functions such as function f, 
which reflects the advance of each train on the rail track. 
But there are several types of CP-nets. In particular, this 
study is based on Karl Jensen’s Colored Petri Nets (CPN 
hereafter (Jensen et al., 2007). They are not pure CP-nets. 
Actually, they become a High Level Petri Nets (Jensen 
and Rozenberg, 2012).  

Figure 6: CP-nets of the two trains on a track 

In CPN model, each place has a type such as OccBlock 
that defines the type of the place OccupedBlocks. It is 
initialized with two tokens that are each a 2-uple. Based 
on the operator of multiset (‘++’ is the addition operator 
for a multiset), if M represents the marking function, one 
can write the marking of OccupedBlocks by the equation 
(1). 
��OccupedBlocks� � 1`�Tr�1�, B�5�	� �

�1`�Tr�2�, B�2��  (1) 

1`�Tr�1�, B�5�	� is a token composed of 2 elementary 
colors: Tr(1) is the identifier of train 1 and B(5) defines 
the block that it occupies. 

4.1.2. Main features 
The choice of CPN is also justified by the existence of 
CPN Tools, a suite of tools for editing and analyzing 
them. It makes it possible to develop a model in a 
modular and hierarchical way (see section 4.3). CPN 
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Tools also offers designers the ability to analyze the 
properties of their models. The analyses are based on the 
generation of the reachability graph of the CPN model 
called occurrence graph by the authors (Jensen and 
Rozenberg, 2012). Its generation makes it possible to 
obtain a report on the usual properties of a PN such as 
boundedness or liveness. This feature will be used in 
section 6. CPN Tools has also a model-checker called 
ASK-CTL that allows to analyze specific properties of a 
model (Christensen and Mortensen 1996). It is out the 
scope of this study.  

4.2. Component modelling principles 
The objective of our modeling is to build generic 
components that can be placed in a library after checking 
their properties. These components can then be used to 
build global models of a railway system by instantiating 
these generic components. For that, each component is 
defined as a CPN module interface places to allow it 
communicating with its environment. Because the global 
model is distributed in different computers, the 
components communicate by the semaphore technique 
(Murata, 1989). The orientation of the arc linking an 
interface place to a module indicates the nature of the 
semaphore. So when a module (component) requests a 
service from another component, it will use a semaphore 
request. The requesting component then acts as a client 
and the receiving component as a server component. 
When the server component responds to the client 
component, it will use an acknowledge type semaphore.  

Figure 7: Generic component architecture 

In order to be able “to instantiate” the generic 
components to implement a global model, let us use 
configuration places of each module. A configuration 
place is used to specify the identifier of each component 
at the time of instantiation (copy in the global model) of 
each generic module. One or more other places will make 
it possible to define the specific parameters of each 
component (Figure 7). It can be noted that the arcs 
linking the configuration places to the module are 
bidirectional. This means that the tokens of these places 
are read by the module and then rewritten in the place for 
later use. 
Figure 8 shows how to build a global model from generic 
components. This global model uses two instances of 
module 1 and one instance of module 2. The 
configuration places are initialized to define the identifier 
and parameters of each module when building the system 
model. It is noted that the identifier of each instance is 
unique even if they are instances of the same module. 
The parameters of two instances of the same module can 
be identical. Thus, P1.1 and P1.2 can contain the same 

values. It is noted in this construction that the 
communication interfaces between two types of modules 
are merged. Thus it is the same place M1toM2 that 
models the communications of the instances of module 1 
to the instances of module 2. This choice is made to 
illustrate the fact that in modern architectures 
communications are based on media operating in 
broadcast mode. Thus, the exchanged messages must 
contain the sender's identifier and the recipient's 
identifier so that the latter can recognize the messages 
sent to him and can respond to the sender. 

Figure 8: System architecture built from generic 
component instances 

4.3. Implementation of modelling principles in CPN 
Tools 

To implement our modeling principles, CPN Tools offers 
3 specific services: the ability to define component 
identifiers based on index color set (‘colset’ type 
constructor in CPN’s syntax), module definition through 
substitution transitions, and places’ integration through 
socket/port or fusion places (Jensen and Rozenberg, 
2012; Jensen and al., 2007).  
An index colorset are sequences of values defined by an 
identifier-name and an index specifier. Other parameters 
are represented by their convenient types and can be 
merged into a record or product colset to have a compact 
representation. Figure 9 shows an example of the 
declaration of the parameters of a train component 
(EVC). Among these parameters, colorset TRAINNO is 
defined as an index colset and is a type used to define 
different identifiers of trains. The examples of its values 
could be Train(1), Train(2)…  Train(10). A record colset 
TrainAttribute assigns other parameters to an instance of 
the train component, such as train type, train mass, its 
origin and destination stations. 

Figure 9: Declarations for configuration places of 
component train (part of) 
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1 val maxtrain=10;  

 2 colset TRAINNO = index Train with 0..maxtrain; 

 3 var tno: TRAINNO; 

 4 colset TrainType = with Passenger | freight; 

 5 colset TrainMass = int with 0..100000; 

 6 colset StationName = string; 

 7 colset TrainAttribute = record tType:TrainType * tMass:TrainMass * tOrigin:StationName * 
tDesti:StationName; 
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The notion of substitution transitions makes it possible to 
distinguish two modeling layers of a system under CPN 
Tools: the global layer (upper level) and the component 
layer (lower level). The global layer mainly defines the 
configuration of the instances of the components and 
illustrates the connections between them, as shown in 
Figure 11. This global layer is also modeled as a colored 
Petri net model. In CPN Tools, the module body of each 
instance is represented by a substitution transition 
(rectangles with double-line borders in Figure 10) in this 
global layer. 

Figure 10: Example of configuration places of train 
component 

The hierarchical feature supported in CPN Tools offers a 
possibility of implementing the interfaces between 
different component models or their instances. Figure 11 
shows an example of system modeled with two layers: 
the global layer and the component layer. Two 
components “Train” and “RBC” are modeled using the 
component modeling method of the parametric module 
representation. In the example, one instance of each 
component is used to build a global model. Transitions 
“Train” and “RBC” are substitution transitions in CPN 
Tools and their details are modeled in the module body 
of the corresponding component modules. Places 
“Train1” and “RBC1” are configuration places used to 
assign different identifiers and parameters to these 
instances the corresponding generic components. Place 
“T2RBC” is an interface place which is used send 
information from a train instance to an RBC instance.  
An interface modeled by CPN hierarchy is implemented 
by port/socket assignments, which are used to merge 
places on the two layers. Such a place on the lower layer 
(component layer) is called a port, and that on the higher 
layer (global layer) is called a socket. A port is always 
associated with a port-type tag (the blue tags in Figure 
11) and can be one of the three kinds according to the
direction: tag “In” for “ input”; tag “Out” for “ output” and 
tag “In/Out” for both the two directions. 
A socket is an input place or an output place of a 
substitution transition, i.e. there is always at least one arc 
between a substitution transition and a socket. 
By using the port/socket assignments, a component 
module can be “glued together” with the surroundings of 
its corresponding substitution transition. Each socket 
must be assigned to a port on the corresponding subpage. 
A port with a tag “In” must be assigned to a socket which 
is an input place of the substitution transition. 
Analogously, an “Out” port requires a socket which is 
used an output place of the substitution transition. In the 
example, the “In/Out” ports are used by the configuration 
places because that the identifiers and parameters in these 

places are normally to be referred to, other than to be 
generated nor to be consumed. 

Figure 11: Modelling of interfaces by CPN Tools 
hierarchy 

In order to distinguish the different instances of the same 
component as a concrete sender or receiver, a colored 
token to be used in the interface places need to be defined 
as a product colset as given by equation (2): 

�Sender	Identifier, Receiver	Identifier, Message�(2) 

The “Message” in (2) can also be a product colset, which 
is usually composed of a “MessageType” filed and one 
or more value(s). An example of a position report sent by 
a train instance to an RBC instance to update its position 
could be: 

�Train	�1�, RBC	�1�, �UPDATE, Train�1�, 10�� (3) 

In this message, “UPDATE” is the message type, 
followed by the values “Train (1), 10” that means 
Train(1) is located on block 10. 

5. MODELLING OF GENERIC COMPONENTS
In this section, we will propose models of the three 
generic components used by our actual global model of a 
railway system: EVC, RBC and JTC. 

5.1. Modelling of the EVC component 
As indicated in paragraph 3.2.3, the main functions of a 
train are the management of its position, the management 
of its movement authorizations and the management of 
its movement. The train's itinerary in the rail system is 
defined by the data of its departure and destination 
stations. Also, in its departure station, the train waits to 
receive a departure authorization from the STC. 
Following this authorization, it requests the STC for a 
route to go out of the station. The established route is 
notified to it by the STC. The train will then travel 
through the track sections to reach the first block of line 
at the station exit. In parallel, the station has pre-
registered the train with the RBC managing the line the 
train will use (see the modeling of JTC in section 0 and 
the case study in section 7). A train departure operation 
is modeled by the CPN of Figure 12. The red part of the 
figure models the crossing of the last section of track 
before reaching the railway line. When the train enters 
the first block of the railway line, this is confirmed by the 

RBC

global layer

Component layer ( CPN Tools subnets) 

T2RBCTrainTrain1 RBC1

Train Module Body RBC Module Body

Out In

In/Out In/Out
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signal sent by the block’s balise (see place Balise2EVC 
in the upper left part of Figure 12). It then sends his 
position to the RBC to confirm his arrival on the line (see 
place EVC2RBC in in the upper right part of Figure 12). 
From that moment, it is registered by the RBC, which 
then sends it its first movement authorization (MA). This 
MA allows him to retrieve the last block number (End of 
Authorization or EOA) of the line it is authorized to join 
given the occupation of the line by other trains. The place 
Balise2EVC models the train's communication interface 
with its environment and in particular the reception of 
notifications of the train's position by the balises of the 
infrastructure. These notifications distinguish between 
line balise messages that are processed by the blue part 
and node balise messages that are processed by the 
purple part. The green part models the treatment of MA 
by ECV. It is noted that for reasons of simplicity, this 
model does not integrate the train's operating modes. 

Figure 12: Model of EVC 

5.2. Modeling of the RBC component  
An RBC manages a line between two nodes (see Figure 
4). Its main function is to regulate train traffic by giving 
them movement authorizations according to the location 
of each train on the line. Each train arriving on the line 
must be registered with the RBC for it to take into 
account its requests for movement authorization. This 
registration is done in two steps. The first step is a pre-
registration by the rail node that the train leaves before it 
even crosses it (a token is placed in the STC2RBC place 
and arrives in WaitingTrains after crossing the 
PreRegistration transition – see Figure 13). As soon as 
the train arrives on the first block of the track, it sends its 
position to the RBC to confirm its registration (A token 
is placed in the EVC2RBC place and the TrainPosition 
place after firing of the PositionReport transition - see 
Figure 13). 
For the sake of simplicity, each sending of a position is 
interpreted as a request for authorization of movement. 
Also when crossing the PositionReport transition, a 
token is placed in the MAReq place, which is then 
processed by the RBC based on the list of trains modeled 
by the Managed Trains List place (see Figure 13). It is 
important to note the difference in priority between 
transitions Update Position (priority P_HIGH) and 
CreatMA (priority P_HIGH+1). This difference ensures 
that the position update is performed before the 

movement authorization is managed. Indeed, in the case 
of simultaneous validation, the transition with the highest 
case of same priority, the firing is random based on token 
semantic. 
When the train arrives on the final block of the line, it 
makes a route request to the controller of the reached 
node (STC for a station or JTC for a junction). This sub-
function is modelled by the green part of Figure 13. 
When the train is connected with another controller, and 
has left the line, it sends a disconnect request to the RBC 
that is processed by crossing the Disconnect transition, 
which removes the train's record in the Managed Trains 
List place (part in red in Figure 13). 

Figure 13: RBC Model 

5.3. Modeling of the JTC component 
In this section, we are interested in the modeling of the 
controller of a junction node. This controller is 
responsible for the dynamic routing of trains crossing the 
node. Given the train's destination station, the JTC 
searches in its base for a route with all resources 
(switches and track sections) available. For this purpose, 
the potential crossing routes are predefined. When the 
controller receives a route request from the train, it 
assigns an available route with respect to the arrival line 
at the node and the destination station. Once the route has 
been allocated, the route is established by specific switch 
controllers. These controllers are not modelled in this 
study and are considered part of the environment. At the 
end the JTC notifies the train of the route availability 
(place JTC2EVC) and notifies the RBC (place 
JTC2RBC) of the destination line in order to trigger the 
pre-registration of the train. All of these operations are 
modelled in Figure 14. 

Figure 14: Model of the junction component 
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6. CHECKING MODEL PROPERTIES
In order to add generic components in the library, it is 
first necessary to check them. The necessary 
verifications are primarily the good engineering 
properties of PN models: liveness, boundedness, no 
deadlock. But any formal verification under CPN tools 
requires the prior construction of the reachability graph 
(also called occurrence graph) of the system in question. 
The difficulty in verifying these properties is related to 
the modular approach used for the design.  Each 
component being a module with interface places, it can 
only evolve thanks to the interaction with its 
environment. There are several modular verification 
techniques available. The simplest technique consists in 
placing the expected answers in the interface places of 
the server components. This method is simple but does 
not offer the necessary quality guarantees. Indeed, it can 
also require to initialize internal places of the model with 
values according to what we want to verify.  Since there 
are several interface places, it is necessary to anticipate 
all the tokens necessary for the evolution of the model. 
Unfortunately, in this case, this can lead to the 
simultaneous validation of several transitions. As the 
token game semantics of PN interpretation leads to a 
random firing of the model transitions, this can lead to 
test scenarios that do not conform to the design logic of 
the component in relation to its use in a railway 
application.  
Another method is the calculation of colored invariants. 
But this method is complicated in the general case of CP-
nets and even more High-Level Petri Nets. CP-nets 
classes such as Well-formed PN have characteristics that 
allow colored invariants to be calculated. But it is more 
difficult to model complex systems with this type of PN, 
which imposes restrictions on the colors and functions 
used in system modeling (Xie et al., 2017). 
A third method is to use the compositional verification 
technique. For component modeling, this technique 
consists of constructing a reduced model of the 
component environment. Although interesting, the 
challenge is to build scale models that are compatible 
with the test scenarios. If some models are too small the 
verification may not be complete.   

To address these difficulties, we have developed a new 
form of modular verification: reactive modular 
verification. This form of verification is based on work 
done on reactive nets (Eshuis and Dehnert, 2003). Our 
objective is to reduce the size of the reachability graph of 
a component and its environment. For that, one 
distinguishes the semantics of interpretation of the 
component to be checked from that of its environment. 
The principle is to keep the models of the other 
components as they are but to interpret them with 
reactive semantics. The component to be checked keeps 
the token game semantics. This allows the environment 
to react by giving quickly acknowledges to the requests 
made to it by the component. Figure 15 illustrates the 
application of state space construction with the use of 
both semantics. In this illustration, we have given 

process A (that represents the component to be checked), 
a token game semantics and process B (that represents 
the environment of component A) a reactive semantics. 
We can see the resulting reachability graph 
corresponding to part in red on the Figure 15. With the 
reactive semantics applied to process B, the interleaving 
of the firings of the transitions of the two processes is 
eliminated. The black part of the reachability graph is 
therefore deleted with the reactive semantics applied to 
process B. This allows reducing the state space without 
having to abstract the environment model in order to 
reduce the global model (of the component to be checked 
and its environment) and then its state space. As a result, 
considering the state space corresponding to the red part 
of Figure 15, one can conclude that process A is live, 
bounded and reversible.  

Figure 15: Principle of reactive modular verification 

To implement this differentiated semantics in CPN 
Tools, it is sufficient to use different priorities between 
the component to be checked (default normal priority - 
P_NORMAL) and its environment. For example, to 
check the train model, we gave maximum priority 
(P_HIGH) to the RBC and JTC components (compare 
priority of transitions of EVC model in Figure 12 and 
RBC model in Figure 13). The priority P_INSTATION 
is less than the priority P_HIGH but greater that the 
priority P_LOW.  

7. ILLUSTRATIVE CASE STUDY
In this section, we will illustrate how to use the previous 
generic components to model a railway system. To do 
this, we will use as a case study the example presented 
by Figure 16. 

Figure 16: Example of railway network 
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It has 4 stations named station A to station D and a 
junction for the interconnection of the lines leading to 
these stations. Let us suppose that two trains are initially 
located in station A and they must go to station C at 
different times. To reach station C, they must go through 
junction N. The exit door from station A to go to N is 
door D. Station A and junction N are connected by Line 
1 managed by RBC1. To reach Station C, trains must exit 
through door C and take Line 3 controlled by RBC2. 

7.1. The global model 
Following the decomposition of Figure 3, one abstracts 
the railway control system as composed of two EVC to 
model the trains (EVC1 and EVC2), one RBC for line 1 
(RBC1) and another one fore line 3 (RBC2) and JTC1 to 
model the controller of junction N.  
In the global layer (Figure 17), each instance is modeled 
as a substitution transition and is parametrized by its 
configuration place. As an example, the configuration 
place of EVC1 instance is called T1info and the 
configuration place of EVC2 is called T2info. In order to 
have a more compact representation, a unique 
configuration place with a compound colored token in a 
form of (4) to represent both the train identifier and the 
necessary train attributes is used. 

�Identifier, Attribute	1, . . , Attribute	n� (4) 

As an example, the initial marking of T1info is: 
�-�.1/012� � 1`�.34/0�1�, 5646/207, 5646/208�(5) 

Train(1) is the identifier of the first train. StationA and 
StationC define respectively the departure and the 
destination station of Train(1). In, the same way is 
defined the parameters of each RBC.  

�-�9:81;012� �

1`�9:8�1�, 5646/207, <, =2>?=, 7, 20� (6) 

Equation (6) means that RBC(1) controls the line from 
StationA gate D to junction N gate A. This line is 
composed of 20 blocks. This last parameter is essential 
for the RBC to know when a train has reach the end of 
the line that it controls in order to request to the JTC a 
route for the train (corresponds to the firing of transition 
RouteReq in RBC model in Figure 13) .  
The interface places enable to model the communication 
from one type of components to another type of 
components. For example, in Figure 17 the place 
EVC2RBC models the communications from the EVC 
instances to the RBC instance. In this case study, it is not 
possible for EVC to request itself a route to the junction 
N. The structure of colored tokens put in the interface 
places enables to define the concrete participants of the 
communication. As an example, it is worth to notice the 
initialization of place JTC2RBC in Figure 17.  

�-�@.829:8� � 1`�.AB?9?C, 5646/207, 9:8�1�, 

�.34/0�1�, 5646/207, 5646/208��  (7) 

This initialization enables us to simulate the request of 
StationA that requests RBC(1) to perform a 
preregistration of Train(1) that is arriving on the line 
controlled by RBC(1). It also gives to RBC(1) all the data 
of the itinerary of Train(1). One can also notice that the 
initial marking of T1BM is a list of data that are like 
(Line(1), (Inline,1,TC(1)) or (Line(0), (InStation, 20, 
TC(1)). Line(1) means that it defines a train position on 
Line(1). As an example (Line(1), (Inline,1, TC(1)) means 
that the train is on the block 1 of the Line(1)  and will 
reach NodeN by its track section TC(1). (Line(0), 
(InStation, 20, TC(1)) means that Train(1) is in a node 
(station or junction) on the track section TC(1) and is 
arrived by the block 20 of the line before the node. So the 
list allows modeling the sequence of the train positions 
for simulation or the construction of its reachability 
graph. The global layer model can be easily modified by 
connecting/disconnecting components to the 
corresponding interfaces.  

Figure 17: An example of global model based on 
instantiation of generic components. 

7.2. Reachability graph construction for formal 
verification of a generic component 

In order to perform properties’ verification, it is 
necessary to build the reachability graph of the 
component to be checked with its environment. 
Considering the global PN model of section 7.1, let us 
suppose that one wants to check EVC component (more 
precisely EVC1). To apply the reactive modular 
verification, let us modified the priority of all the 
transitions of RBC1, RBC2 and Node N, from 
P_NORMAL to P_HIGH (a way to perform reactive 
semantics). The priority of transitions of the EVC 
components remain at P_NORMAL (a way to keep the 
token game semantics) except the transitions InBlock and 
InNode that keep the priority P_LOW.  
To give an idea of the complexity of this verification, we 
have constructed the reachability graph of the global 
model of our case study by just considering the evolution 
of one train (Train(1) corresponding to EVC1) going 
from station A to station C. This corresponds to the initial 
marking in Figure 17. One can note that the T2BTM place 
that models Train(2) positions is not marked indicating 
that it remains immobilized.  
Table 1 shows the results of this evaluation in terms of 
size and duration. They show the interest of building 
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reachability graphs using a mix of the two semantics 
(reactive semantics for the environment). These results 
have been obtained on an Intel CORE i7-5600U CPU at 
2,60 GHz, with 16 GO of RAM.   

Table 1: Comparison of the size of the reachability 
graphs constructed with the two semantics 

As indicated by the fact that the number of arcs is equal 
to the number of states minus one, in the case of reactive 
semantics, the reachability graph is linear. The last state 
is blocking, modeling the arrival at station C. With the 
same initial marking and the use of token semantics for 
all the global model, the reachability graph is much 
larger. One can especially note that it has three times 
more arcs than nodes indicating the strong interleaving 
of the firing of transitions due to this semantics. This 
example illustrates the great efficiency of the 
construction of reachability graphs using reactive 
semantics for the environment.    
The obtained reachability graph shows that our model is 
correct since the train has effectively followed its 
itinerary. In the obtained scenario, all the transitions of 
the EVC have been fired at least once (once for the 
transitions corresponding to the travel inside the node N, 
and several times for the others), proving that the global 
models is L1-live (Murata, 1989). In fact the 
modification of the global model with a transition that 
resumes the initial marking of this case study from de 
dead-marking obtained when Train(1) reaches station C, 
one shows that the EVC model is live and bounded.   
Applying this approach to each generic component, 
proves that all our generic components are live and 
bounded.  

8. CONCLUSIONS AND PERSPECTIVES
This work made it possible to propose a decentralized 
control architecture for the complete automation of rail 
system control. The objective is to go far beyond the 
automation of train operation as envisaged by the 
autonomous train concept. It showed that it was possible 
to develop a system modeling approach based on generic 
components placed in a library. The developed 
components correspond to our points of view that will be 
refined through standardization. They do not integrate all 
the complexity of modelling such systems. For example, 
we did not take into account the modeling of a train's 
operating modes, which include dozens of modes. We 
have not modelled train speed regulation that would 
require the use of a formalism such as hybrid PN (David 
and Alla, 2005). In this context, the question will arise of 
having a formalism that allows the characteristics of the 
two types of PN to be integrated.  

The use of reactive semantics is an important way 
to reduce the combinatorial explosion of reachability 
graphs. The proposed approach allows proving the 
correctness of each generic component building a kind of 
global model with a distinction of the component to be 
checked and its environment. However, in order to check 
some properties such as the absence of possibility of 
collisions between two trains, it is necessary to develop 
another approach of verification that takes into account a 
more global model with several instances of trains. 

REFERENCES 
Christos G. Cassandras, & Lafortune, S., 2008. 

Introduction to discrete event systems. NewYork 
(USA), Springer. 

Christensen, S., & Mortensen, K. H. Design/CPN ASK-
CTL Manual, version 0.9, 1996. URL 
http://cpntools.org/_media/documentation/askctl
manual. pdf.[checked on 2013-12-16]. 

David, R., & Alla, H, 2005. Discrete, continuous, and 
hybrid Petri nets (Vol. 1). Berlin: Springer. 

Eshuis R, Dehnert J. 2003. Reactive Petri Nets for 
Workflow Modeling. Appl Theory Petri Nets 2003, 
vol. 2679, pp. 295–314.  

European Railway Agency. 2016. ERTMS/ETCS 
System Requirements Specification (SUBSET-
026) v3.6.0 

Jensen, K., & Rozenberg, G, 2012. High-level Petri nets: 
theory and application. Springer Science & 
Business Media. 

Jensen, K., Kristensen, L.M. & Wells, L., 2007. 
Coloured Petri Nets and CPN Tools for modelling 
and validation of concurrent systems. International 
Journal on Software Tools for Technology 
Transfer, 9(3–4), pp. 213–254. 

Lusby, R. M., Larsen, J., Ehrgott, M., & Ryan, D. M. 
(2013). A set packing inspired method for real-
time junction train routing. Computers & 
Operations Research, 40(3), pp. 713-724. 

Murata, T., 1989. Petri Nets: Properties, Analysis and 
Applications. Proceedings of the IEEE, 77(4), 
pp. 541–580. 

Vanit-Anunchai, S., 2014. Experience using Coloured 
Petri Nets to Model Railway Interlocking Tables. 
In 2nd French Singaporean Workshop on Formal 
Methods and Applications (FSFMA’2014). 
Singapore, pp. 17–28. 

Xie, Y., Khlif-bouassida, M. & Toguyeni, A., 2017. 
Well-formed Petri Net Based Patterns for 
Modeling Logic Controllers for Autonomous 
Trains. Proc. of  IMAACA2017, Barcelona 
(Spain), pp. 25–34 

Yin, J., Tang, T., Yang, L., Xun, J., Huang, Y., & Gao, 
Z., 2017. Research and development of automatic 
train operation for railway transportation systems: 
A survey. Transportation Research Part C: 
Emerging Technologies, 85, 548-572. 

Type of 
semantics

Number 
of nodes

Number 
of arcs

Number of dead 
markings

Duration 
(in seconds)

Token 
semantics

5414 15042 35 13

Mix of the two 
semantics

38 37 1 1

Reachability graph

Proc. of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2019 
ISBN 978-88-85741-31-7; Bruzzone, Dauphin-Tanguy and Junco Eds

114


