
armand.toguyeni@centralelille.fr

ABSTRACT
The automation of rail systems is a major challenge for
the development of this mode of transport. This
automation must affect all the functions of the control
system and not just the replacement of train drivers. This
study proposes a component approach for modelling
control functions based on Colored Petri Nets. This
component approach masks the complexity of the system
components and their functions from the designers of a
rail system. In this work we also propose a new formal
verification method based on the construction of a
reduced reachability graph of a global model. This
approach makes it possible to verify the main properties
of the components necessary for their implementation in
software libraries that can be used by railway system
designers.

Keywords: Discrete Event Systems, Colored Petri Net,
formal modelling and verification, Automatic Train
Control.

1. INTRODUCTION
The automation of rail systems is a major challenge for
the development of this mode of transport with regard its
competition with road and air transport. This study
proposes to use a component approach to facilitate the
design of railway systems. This requires to develop
generic component libraries. Assisted by such libraries, a
designer can model a rail system by instantiating the
generic components of his library and specifying the
interactions between these components. This requires to
check that each generic component works properly.

This work proposes to use Jensen’s Colored Petri
Nets (CPN hereafter) for modeling railway systems.
They allow to use the modularity and the parametric
modeling to build generic components. These generic
components can be instantiated to build a global model.
This paper is structured as follows. In the second section,
we will present how actual railway systems operate and
the main functions of an automatic control system. In
section 3, we will propose a decentralized control
architecture for the implementation of automatic control

of railway systems. In the fourth section, we will present
our modeling principles based on the concept of Petri
Nets modules, with modules whose operation depends on
parameters. In the fifth section we will propose a
modeling of some of the components presented in the
third section. The sixth part focus on the verification of
our generic components. In particular, we will introduce
a new semantics of PN interpretation in order to reduce
the size of reachability graphs. Section 7 gives a case
study to illustrate our approach. We will end with a
conclusion and perspectives.

2. STATE OF ART OF AUTOMATIC TRAIN
CONTROL

2.1. Description of a railway system and its
operation in traditional mode

A railway system can be abstracted as consisting of
railway nodes and railway lines. There are two categories
of railway nodes: stations and junctions. A rail junction
consists of switches end track elements that establish
routes for routing trains. Stations have platforms that
allow a train to stop for passenger loading/unloading.
This is what differentiates them from junctions (Lusby,
Larsen, Ehrgott, & Ryan, 2013). Rail lines are used to
connect stations together. But several railway lines may
cross at junctions allowing trains to move from one line
to another to reach a destination station. Lines generally
have two one-way tracks to connect two nodes in both
directions of traffic (round trip). Normally, all trains on a
track move in the same direction of travel. Some lines
may have bidirectional track portions. Within a railway
node, some track sections can also be bidirectional.

Safety is one of the main criteria for the proper
functioning of a railway system. To do this, it is
necessary to avoid collisions.
In order to ensure the proper functioning of railway
systems, three categories of human operators take
decisions and manually trigger control operations: train
drivers, line regulators and railway dispatchers.

Proc. of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2019
ISBN 978-88-85741-31-7; Bruzzone, Dauphin-Tanguy and Junco Eds

105

 DOI: https://doi.org/10.46354/i3m.2019.imaaca.014

COMPONENT APPROACH BASED ON PETRI NETS FOR THE DESIGN OF THE
 AUTOMATIC CONTROL FOR RAILWAY SYSTEM

Armand Toguyéni

Centrale Lille, CRIStAL, UMR 9189
 59650 Villeneuve d’Ascq, France

Univ. Lille Nord de France, F-59650, Lille, Franc)

The role of the train driver is to control the advance of
his train by respecting the signaling (lights and speed
limits). He has no control over the train's itinerary, which
depends on the other two operators. Today, in modern
control and signaling systems, the driver operates under
the control of an automated train protection system
(ATP). This system is used to guarantee safety,
especially on the lines. It can trigger an emergency stop
of the train if necessary. The driver performs other
functions such as opening and closing train doors.
The function of the line regulator is to regulate the traffic
of the trains on the line it controls. To do this, it can
switch a slow train onto a bypass track to allow a faster
train to pass it. The slow train then returns to the main
track as soon as possible.
The dispatcher role is to decide which trains pass through
the node he controls. It establishes a route for each train.
It can be assisted by a computer for assigning a route to
a train. By default the signal at the node input is closed
(red light). When the signal is open (green light), the train
can enter the node (Lusby, Larsen, Ehrgott, & Ryan,
2013).

2.2. Automatic train control systems
Current rail systems are not very automated but there are
many automated metro lines in the world because they
are simpler. The main automatic control system (ATC)
used by metros are Communication-Based Train Control
also called CBCT (IEEE Std 14741, 2004). One of the
main features of this system is the use of radio
communication between trains and ground
infrastructure. This system has inspired ERTMS Level 2
which is based on the GSMR communication system
(European Railway Agency, 2016). This study assumes
the use of such type of communication.
An automatic train control system is actually divided into
three subsystems (Yin, et al., 2017): the train operating
system (ATO), the automatic train protection system
(ATP) and the train supervision system (ATS).

Figure 1: ATC structure (Yin, et al., 2017)

The function of the ATO is to replace the driver on board
trains. This is the function to be developed as part of the
autonomous train. It is responsible for controlling the
advance (traction) and stopping of trains (braking)
according to its operating modes and speed limits. It is a
function that is both on board and on the ground (Figure
1). Indeed, the trackside controllers will calculate the
train's movement authorizations according to the
limitations due to its location in the network but also

according to the position of the other trains in the
network.
The role of the ATP function is to monitor the execution
of train operations. In manual driving mode, it controls
the commands given by the driver to the train. In
automatic mode it controls the orders of the ATO. The
ATP will directly control the emergency braking. It is
also a function that is both on board the train and on the
ground (Figure 1). The majority of current rail control
and signaling systems are based on the blocks’ technique.
This technique guarantees safety on the tracks of a line.
Indeed, each track is divided into electrically isolated
blocks. Safety requires that there be only one train per
block. In actual systems, the safety implemented by ATP
is based on the concept of interlocking. Also, there are
many studies on the verification of interlocking by
formal methods including CPN (Vanit-Anunchai, S.,
2014). ATP is a critical function from safety point of
view.
The ATS function is a function of the ground system
(Figure 1). It monitors that the train movements are in
accordance with the planned scheduling. It is also
responsible for the dynamic routing of the train for
crossing railway nodes.

2.3. Conclusion
More specifically, this work is a contribution to the
implementation of sub-functions of the ATO (train
movement authorization) and ATS systems. For this, we
will be inspired by ERTMS/ETCS level 2 which is in fact
an ATP function for protecting the movement of a train
on a railway track (European Railway Agency, 2016). In
next sections, we propose a new architecture and a
methodology to develop automatic control system.

3. DECENTRALIZED ARCHITECTURE FOR
THE CONTROL OF A RAILWAY SYSTEM

This study concerns the management of multiple trains
in a railway network with a full automation of the system.
To propose a new architecture, we are going first to
propose a structural and a functional decomposition of a
railway network. A top-down approach is used to
conduct this decomposition for a railway system by first
considering separately the two points of view and then
by mapping together the elementary components of the
system with their functions.

3.1. Structural decomposition
A railway network is a complex system. Its control is
distributed in several components of the ground
infrastructure and onboard the trains. In order to be able
to model such a system, a structural decomposition is
necessary. Figure 2 summarizes the proposed
decomposition.
It is important to notice that the structure of each
subsystem (stations, junctions and railway tracks) is
different depending on the railway network
requirements, but the basic components (block, switch,
track section, balise and track circuit) used to implement
them are generic.

Proc. of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2019
ISBN 978-88-85741-31-7; Bruzzone, Dauphin-Tanguy and Junco Eds

106

Figure 2: Structuration Decomposition of a Railway
Network

3.2. Functional Decomposition
Because this study aims to propose a methodology for
automatic control, the structural decomposition also
shows the different controls centers that allow
implementing a decentralized control of a railway
system.
At the top of the hierarchy, there is the Centralized
Traffic Control (CTC hereafter). The CTC checks in real
time that the planned transport plan is implemented
throughout the network. It has a global but macroscopic
view of rail traffic in the system it controls. Thus, it
defines and updates the itinerary of each train. Each
itinerary is defined in terms of departure station, arrival
station (final destination), intermediate nodes through
which the train will pass. The arrival dates of a train at
each node of its itinerary are defined by the planned
transport plan. The CTC regularly receives feedback
from the lower-level control centers that execute locally
this plan. It calculates the differences between the
executed and the planned plan and sends back to local
centers, updated local transport plans. It implements rail
traffic supervision that is an ATS function.
The types and number of local controllers are consistent
with the breakdown of the infrastructure into railway
nodes and lines composed of tracks. A local control
center is associated with each railway node. Each
junction is controlled by the JTC (Junction Traffic
Controller) whose main function is to implement
automatic train routing (an ATS function) within the
node. Taking into account the local planned transport
plan (list of trains to cross the junction in a time slot), the
JTC allocates in real time the resources necessary for
each train arriving at the node to set its route. It is based
on a planned scheduling of traffic to cross the junction in
accordance with the local transport plan received from
the CTC. In case of fault, the local transport plan is
updated. If this update does not absorb all the disruptions,
the CTC is informed so that more global actions can be
taken to find a solution. Trains can be slowed down,
accelerated or even their itinerary modified. The JTC is
also responsible to set up the train route (it is an ATO
function) and to give to each train its movement
authorization inside the junction (it is an ATP function).
The stations are controlled by the STCs (Station Traffic
Controller). STCs implement automatic train routing like

JTCs. In addition, they must manage the assignment of
platforms to trains that stop at the station.
The Radio Bloc Center (RBC) operates in the same way
as in ERTMS/ETCS level 2 (European Railway Agency,
2016). Each train regularly sends its position to it. Taking
into account the position of each train on the track and
their time constraints, the RBC calculates their respective
movement authorizations (authorized travel distance and
speed profile) and regulates the traffic of the trains on the
line. Movement authorizations are transmitted to trains
in response to their requests for movement authorization.
The fourth local control center is onboard in each train.
It is implemented by the main computer of the train
called EVC (European Vital Computer). It has a role
similar to that defined in the standard (European Railway
Agency, 2016). It implements both the ATP and ATO
functions of the train. The role of this computer is to
control the train's advance (an ATO function) by
respecting the movement authorizations (an ATP
function) transmitted by the RBC when it is on a track.
When it must cross a node, it communicates with the
controller of the node (JTC or STC) who gives it his
movement authorizations in accordance with the route it
has assigned.

3.3. Mapping Relations

Figure 3: Mapping Relations from Control Viewpoint

Figure 3 depicts the relations mapping between the
control components of a railway network and the
different functions hold by each of them. On the left of
the figure, the green nodes represent the functional
decomposition of a Railway Network from control
viewpoint. On the right of Figure 3, the yellow square
model the main control components. As an example, one
can see that STC is associate with platform allocation and
automatic train routing that are ATS sub-functions and is
also associate with MA Management and Position/Speed
Management that are ATP sub-functions.
In the rest of the paper, we will focus on the design of
control functions of JTC, RBC and EVC components.

4. MODELING OF DISCRETE CONTROL
COMPONENTS

The objective of this part is to show how to model
components in order to allow the modelling of a rail

Railway Network

Infrastructure Train

Balise (Track)

Block

JunctionStation Railway Track

Track Section

Balise

(node)

Switch

(Track)

Switch

(node)

Track circuit

(node)

Track circuit

(Track)

CTC

RBC

EVC

JNDSND

Position/Speed
Management

ATS

Automatic Train
Routing

Computation of
trains’ itineraries

Timetable

ATO

Train movement

Door
opening/closing

ATP

MA
Management

CTC

RBC

EVC

STC

JTC

<associate>

<associate>

<associate>

<associate>

Functional Decomposition Structural Decomposition

<associate>

<associate>

<associate>

<associate>

Mapping relations

Platform
Allocation

<associate>

<associate>

Proc. of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2019
ISBN 978-88-85741-31-7; Bruzzone, Dauphin-Tanguy and Junco Eds

107

control system. We focus here on the train EVC, RBC for
line control and STC for junction control.

4.1. Colored Petri Nets
4.1.1. Introduction
For DES, there are three types of formal models
(Cassandras and Lafortune, 2008): regular languages,
automata and Petri Nets (PN hereafter). PN were defined
in 1962 in the thesis of the German mathematician Carl
Adam Petri. He then showed that it was the best
formalism to model DES characterized by several
subsystems evolving in parallel and sometimes having to
be synchronized. The initial formalism is called,
Places/Transitions Petri nets (notation P/T-nets). But
since that time, many abbreviations or extensions of PN
have been proposed by other authors. Colored Petri Nets
(CP-nets hereafter) are basically an abbreviation for P/T-
nets. It means that any colored model can be unfolded to
find the equivalent P/T-nets model. Coloration consists
of defining sets of objects. Thus, the model's tokens can
model real-world objects. With P/T-nets, it is necessary
to make a specific net for each object. CP-nets make it
possible to factorize the behavior common to several
objects into a single model of the same size as the model
of an object in the case of P/T-nets. Thus, they make it
possible to gain in concision and thus to reduce the size
of the model representing the set of physical objects.

Figure 4: Example of two trains on a railway track

To illustrate the power of expression of Colored Petri
Nets, consider the example given in Figure 4. This
example defines two trains moving on a railway track
composed of N blocks. N is a parameter that represents
the length of the track in number of blocks. Figure 5
illustrates the modelling of this system in P/T-nets. In this
case, in order to distinguish between the two trains, a
model must be constructed for each train. The overall
model of the system is therefore composed of 2N places
and 2N transitions. The corresponding automaton would
be composed of N2 states illustrating the combinatorial
explosion of this formalism.
Figure 6 illustrates the same problem modeled in CPN
which is an extension of CP-Nets (Jensen et al., 2007). In
this case, the problem parameters can be specified by
constants (NTr for the number of trains and N for the
number of blocks).

Figure 5: P/T-nets of the two trains on a track

This allows to define train identifiers (Tr(1) is the train
identifier of train 1 and Tr(2) is the identifier of train 2)
using the ML language of CPN Tools. Similarly, we can
specify the block identifiers on which the trains are
positioned (B(2) and B(5) respectively). CPN Tools' ML
language allows to define composite types such as
OccBlock which specifies the blocks occupied by a train.
The definition of these types allows to fold the P/T-nets
of Figure 5 and to obtain the CP-nets of Figure 6
composed of 1 place and 1 transition. It can be seen that
this model is much more compact than the one obtained
with P/T-nets or finite state automaton. However, it
requires the creation of functions such as function f,
which reflects the advance of each train on the rail track.
But there are several types of CP-nets. In particular, this
study is based on Karl Jensen’s Colored Petri Nets (CPN
hereafter (Jensen et al., 2007). They are not pure CP-nets.
Actually, they become a High Level Petri Nets (Jensen
and Rozenberg, 2012).

Figure 6: CP-nets of the two trains on a track

In CPN model, each place has a type such as OccBlock
that defines the type of the place OccupedBlocks. It is
initialized with two tokens that are each a 2-uple. Based
on the operator of multiset (‘++’ is the addition operator
for a multiset), if M represents the marking function, one
can write the marking of OccupedBlocks by the equation
(1).
��OccupedBlocks� � 1`�Tr�1�, B�5�	� �

�1`�Tr�2�, B�2�� (1)

1`�Tr�1�, B�5�	� is a token composed of 2 elementary
colors: Tr(1) is the identifier of train 1 and B(5) defines
the block that it occupies.

4.1.2. Main features
The choice of CPN is also justified by the existence of
CPN Tools, a suite of tools for editing and analyzing
them. It makes it possible to develop a model in a
modular and hierarchical way (see section 4.3). CPN

Train 2
B1 B2 B4 B5 BN-1 BN

Size : 2N places and 2N Transitions

Train 1
B1 B2 B4 B5 BN-1 BN

(*Parameters*)
val NTr=2;
val N=100;
(*Types *)
colset TrainID=index Tr with 1.. NTr;
colset BlockID=index B with 1 .. N;
colset OccBlock=product TrainID*BlockID;
(*Variables *)
var Tri : TrainId;
var bj : BlockId;
(* Function *)
fun f(tri,bj)=
If bj <> B(N) then 1`(tri,succ(bj));

else 1`(tri,B(1));

OccBlock(Tr(1),B(9))

(Tr(2),B(3))

(tri,bj)
f(t r i,bj)

Place
type

OccupedBlocks

Movement Transition
name

Place
name

Arc
inscription

1`(Tr(1), B(5))++
1`(Tr(2), B(1))++

Tokens’
initialization

P_NORMAL

Priority to fire
a transition

[bj<=B(N)]
Transition’s

Guard

Proc. of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2019
ISBN 978-88-85741-31-7; Bruzzone, Dauphin-Tanguy and Junco Eds

108

Tools also offers designers the ability to analyze the
properties of their models. The analyses are based on the
generation of the reachability graph of the CPN model
called occurrence graph by the authors (Jensen and
Rozenberg, 2012). Its generation makes it possible to
obtain a report on the usual properties of a PN such as
boundedness or liveness. This feature will be used in
section 6. CPN Tools has also a model-checker called
ASK-CTL that allows to analyze specific properties of a
model (Christensen and Mortensen 1996). It is out the
scope of this study.

4.2. Component modelling principles
The objective of our modeling is to build generic
components that can be placed in a library after checking
their properties. These components can then be used to
build global models of a railway system by instantiating
these generic components. For that, each component is
defined as a CPN module interface places to allow it
communicating with its environment. Because the global
model is distributed in different computers, the
components communicate by the semaphore technique
(Murata, 1989). The orientation of the arc linking an
interface place to a module indicates the nature of the
semaphore. So when a module (component) requests a
service from another component, it will use a semaphore
request. The requesting component then acts as a client
and the receiving component as a server component.
When the server component responds to the client
component, it will use an acknowledge type semaphore.

Figure 7: Generic component architecture

In order to be able “to instantiate” the generic
components to implement a global model, let us use
configuration places of each module. A configuration
place is used to specify the identifier of each component
at the time of instantiation (copy in the global model) of
each generic module. One or more other places will make
it possible to define the specific parameters of each
component (Figure 7). It can be noted that the arcs
linking the configuration places to the module are
bidirectional. This means that the tokens of these places
are read by the module and then rewritten in the place for
later use.
Figure 8 shows how to build a global model from generic
components. This global model uses two instances of
module 1 and one instance of module 2. The
configuration places are initialized to define the identifier
and parameters of each module when building the system
model. It is noted that the identifier of each instance is
unique even if they are instances of the same module.
The parameters of two instances of the same module can
be identical. Thus, P1.1 and P1.2 can contain the same

values. It is noted in this construction that the
communication interfaces between two types of modules
are merged. Thus it is the same place M1toM2 that
models the communications of the instances of module 1
to the instances of module 2. This choice is made to
illustrate the fact that in modern architectures
communications are based on media operating in
broadcast mode. Thus, the exchanged messages must
contain the sender's identifier and the recipient's
identifier so that the latter can recognize the messages
sent to him and can respond to the sender.

Figure 8: System architecture built from generic
component instances

4.3. Implementation of modelling principles in CPN
Tools

To implement our modeling principles, CPN Tools offers
3 specific services: the ability to define component
identifiers based on index color set (‘colset’ type
constructor in CPN’s syntax), module definition through
substitution transitions, and places’ integration through
socket/port or fusion places (Jensen and Rozenberg,
2012; Jensen and al., 2007).
An index colorset are sequences of values defined by an
identifier-name and an index specifier. Other parameters
are represented by their convenient types and can be
merged into a record or product colset to have a compact
representation. Figure 9 shows an example of the
declaration of the parameters of a train component
(EVC). Among these parameters, colorset TRAINNO is
defined as an index colset and is a type used to define
different identifiers of trains. The examples of its values
could be Train(1), Train(2)… Train(10). A record colset
TrainAttribute assigns other parameters to an instance of
the train component, such as train type, train mass, its
origin and destination stations.

Figure 9: Declarations for configuration places of
component train (part of)

Generic
Module 1

Identifier Parameters

Interface
Client1

Interface
Server1

Interface
Client2

Interface
Server2

Configuration
places

Interface
places

Module 1
(Instance 1)

C1_M1 P1.1

Interface
M1toM1

client

Interface
M1toM1
server

Module 1
(Instance 2)

C2_M1 P1.2

Interface
M1toM2

client

Interface
M2toM1
server

Module 2
(Instance 1)

C1_M2 P2.1

Identifier Identifier

Identifier Parameter

ParameterParameter

1 val maxtrain=10;

 2 colset TRAINNO = index Train with 0..maxtrain;

 3 var tno: TRAINNO;

 4 colset TrainType = with Passenger | freight;

 5 colset TrainMass = int with 0..100000;

 6 colset StationName = string;

 7 colset TrainAttribute = record tType:TrainType * tMass:TrainMass * tOrigin:StationName *
tDesti:StationName;

Proc. of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2019
ISBN 978-88-85741-31-7; Bruzzone, Dauphin-Tanguy and Junco Eds

109

The notion of substitution transitions makes it possible to
distinguish two modeling layers of a system under CPN
Tools: the global layer (upper level) and the component
layer (lower level). The global layer mainly defines the
configuration of the instances of the components and
illustrates the connections between them, as shown in
Figure 11. This global layer is also modeled as a colored
Petri net model. In CPN Tools, the module body of each
instance is represented by a substitution transition
(rectangles with double-line borders in Figure 10) in this
global layer.

Figure 10: Example of configuration places of train
component

The hierarchical feature supported in CPN Tools offers a
possibility of implementing the interfaces between
different component models or their instances. Figure 11
shows an example of system modeled with two layers:
the global layer and the component layer. Two
components “Train” and “RBC” are modeled using the
component modeling method of the parametric module
representation. In the example, one instance of each
component is used to build a global model. Transitions
“Train” and “RBC” are substitution transitions in CPN
Tools and their details are modeled in the module body
of the corresponding component modules. Places
“Train1” and “RBC1” are configuration places used to
assign different identifiers and parameters to these
instances the corresponding generic components. Place
“T2RBC” is an interface place which is used send
information from a train instance to an RBC instance.
An interface modeled by CPN hierarchy is implemented
by port/socket assignments, which are used to merge
places on the two layers. Such a place on the lower layer
(component layer) is called a port, and that on the higher
layer (global layer) is called a socket. A port is always
associated with a port-type tag (the blue tags in Figure
11) and can be one of the three kinds according to the
direction: tag “In” for “ input”; tag “Out” for “ output” and
tag “In/Out” for both the two directions.
A socket is an input place or an output place of a
substitution transition, i.e. there is always at least one arc
between a substitution transition and a socket.
By using the port/socket assignments, a component
module can be “glued together” with the surroundings of
its corresponding substitution transition. Each socket
must be assigned to a port on the corresponding subpage.
A port with a tag “In” must be assigned to a socket which
is an input place of the substitution transition.
Analogously, an “Out” port requires a socket which is
used an output place of the substitution transition. In the
example, the “In/Out” ports are used by the configuration
places because that the identifiers and parameters in these

places are normally to be referred to, other than to be
generated nor to be consumed.

Figure 11: Modelling of interfaces by CPN Tools
hierarchy

In order to distinguish the different instances of the same
component as a concrete sender or receiver, a colored
token to be used in the interface places need to be defined
as a product colset as given by equation (2):

�Sender	Identifier, Receiver	Identifier, Message�(2)

The “Message” in (2) can also be a product colset, which
is usually composed of a “MessageType” filed and one
or more value(s). An example of a position report sent by
a train instance to an RBC instance to update its position
could be:

�Train	�1�, RBC	�1�, �UPDATE, Train�1�, 10�� (3)

In this message, “UPDATE” is the message type,
followed by the values “Train (1), 10” that means
Train(1) is located on block 10.

5. MODELLING OF GENERIC COMPONENTS
In this section, we will propose models of the three
generic components used by our actual global model of a
railway system: EVC, RBC and JTC.

5.1. Modelling of the EVC component
As indicated in paragraph 3.2.3, the main functions of a
train are the management of its position, the management
of its movement authorizations and the management of
its movement. The train's itinerary in the rail system is
defined by the data of its departure and destination
stations. Also, in its departure station, the train waits to
receive a departure authorization from the STC.
Following this authorization, it requests the STC for a
route to go out of the station. The established route is
notified to it by the STC. The train will then travel
through the track sections to reach the first block of line
at the station exit. In parallel, the station has pre-
registered the train with the RBC managing the line the
train will use (see the modeling of JTC in section 0 and
the case study in section 7). A train departure operation
is modeled by the CPN of Figure 12. The red part of the
figure models the crossing of the last section of track
before reaching the railway line. When the train enters
the first block of the railway line, this is confirmed by the

RBC

global layer

Component layer (CPN Tools subnets)

T2RBCTrainTrain1 RBC1

Train Module Body RBC Module Body

Out In

In/Out In/Out

Proc. of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2019
ISBN 978-88-85741-31-7; Bruzzone, Dauphin-Tanguy and Junco Eds

110

signal sent by the block’s balise (see place Balise2EVC
in the upper left part of Figure 12). It then sends his
position to the RBC to confirm his arrival on the line (see
place EVC2RBC in in the upper right part of Figure 12).
From that moment, it is registered by the RBC, which
then sends it its first movement authorization (MA). This
MA allows him to retrieve the last block number (End of
Authorization or EOA) of the line it is authorized to join
given the occupation of the line by other trains. The place
Balise2EVC models the train's communication interface
with its environment and in particular the reception of
notifications of the train's position by the balises of the
infrastructure. These notifications distinguish between
line balise messages that are processed by the blue part
and node balise messages that are processed by the
purple part. The green part models the treatment of MA
by ECV. It is noted that for reasons of simplicity, this
model does not integrate the train's operating modes.

Figure 12: Model of EVC

5.2. Modeling of the RBC component
An RBC manages a line between two nodes (see Figure
4). Its main function is to regulate train traffic by giving
them movement authorizations according to the location
of each train on the line. Each train arriving on the line
must be registered with the RBC for it to take into
account its requests for movement authorization. This
registration is done in two steps. The first step is a pre-
registration by the rail node that the train leaves before it
even crosses it (a token is placed in the STC2RBC place
and arrives in WaitingTrains after crossing the
PreRegistration transition – see Figure 13). As soon as
the train arrives on the first block of the track, it sends its
position to the RBC to confirm its registration (A token
is placed in the EVC2RBC place and the TrainPosition
place after firing of the PositionReport transition - see
Figure 13).
For the sake of simplicity, each sending of a position is
interpreted as a request for authorization of movement.
Also when crossing the PositionReport transition, a
token is placed in the MAReq place, which is then
processed by the RBC based on the list of trains modeled
by the Managed Trains List place (see Figure 13). It is
important to note the difference in priority between
transitions Update Position (priority P_HIGH) and
CreatMA (priority P_HIGH+1). This difference ensures
that the position update is performed before the

movement authorization is managed. Indeed, in the case
of simultaneous validation, the transition with the highest
case of same priority, the firing is random based on token
semantic.
When the train arrives on the final block of the line, it
makes a route request to the controller of the reached
node (STC for a station or JTC for a junction). This sub-
function is modelled by the green part of Figure 13.
When the train is connected with another controller, and
has left the line, it sends a disconnect request to the RBC
that is processed by crossing the Disconnect transition,
which removes the train's record in the Managed Trains
List place (part in red in Figure 13).

Figure 13: RBC Model

5.3. Modeling of the JTC component
In this section, we are interested in the modeling of the
controller of a junction node. This controller is
responsible for the dynamic routing of trains crossing the
node. Given the train's destination station, the JTC
searches in its base for a route with all resources
(switches and track sections) available. For this purpose,
the potential crossing routes are predefined. When the
controller receives a route request from the train, it
assigns an available route with respect to the arrival line
at the node and the destination station. Once the route has
been allocated, the route is established by specific switch
controllers. These controllers are not modelled in this
study and are considered part of the environment. At the
end the JTC notifies the train of the route availability
(place JTC2EVC) and notifies the RBC (place
JTC2RBC) of the destination line in order to trigger the
pre-registration of the train. All of these operations are
modelled in Figure 14.

Figure 14: Model of the junction component

Proc. of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2019
ISBN 978-88-85741-31-7; Bruzzone, Dauphin-Tanguy and Junco Eds

111

6. CHECKING MODEL PROPERTIES
In order to add generic components in the library, it is
first necessary to check them. The necessary
verifications are primarily the good engineering
properties of PN models: liveness, boundedness, no
deadlock. But any formal verification under CPN tools
requires the prior construction of the reachability graph
(also called occurrence graph) of the system in question.
The difficulty in verifying these properties is related to
the modular approach used for the design. Each
component being a module with interface places, it can
only evolve thanks to the interaction with its
environment. There are several modular verification
techniques available. The simplest technique consists in
placing the expected answers in the interface places of
the server components. This method is simple but does
not offer the necessary quality guarantees. Indeed, it can
also require to initialize internal places of the model with
values according to what we want to verify. Since there
are several interface places, it is necessary to anticipate
all the tokens necessary for the evolution of the model.
Unfortunately, in this case, this can lead to the
simultaneous validation of several transitions. As the
token game semantics of PN interpretation leads to a
random firing of the model transitions, this can lead to
test scenarios that do not conform to the design logic of
the component in relation to its use in a railway
application.
Another method is the calculation of colored invariants.
But this method is complicated in the general case of CP-
nets and even more High-Level Petri Nets. CP-nets
classes such as Well-formed PN have characteristics that
allow colored invariants to be calculated. But it is more
difficult to model complex systems with this type of PN,
which imposes restrictions on the colors and functions
used in system modeling (Xie et al., 2017).
A third method is to use the compositional verification
technique. For component modeling, this technique
consists of constructing a reduced model of the
component environment. Although interesting, the
challenge is to build scale models that are compatible
with the test scenarios. If some models are too small the
verification may not be complete.

To address these difficulties, we have developed a new
form of modular verification: reactive modular
verification. This form of verification is based on work
done on reactive nets (Eshuis and Dehnert, 2003). Our
objective is to reduce the size of the reachability graph of
a component and its environment. For that, one
distinguishes the semantics of interpretation of the
component to be checked from that of its environment.
The principle is to keep the models of the other
components as they are but to interpret them with
reactive semantics. The component to be checked keeps
the token game semantics. This allows the environment
to react by giving quickly acknowledges to the requests
made to it by the component. Figure 15 illustrates the
application of state space construction with the use of
both semantics. In this illustration, we have given

process A (that represents the component to be checked),
a token game semantics and process B (that represents
the environment of component A) a reactive semantics.
We can see the resulting reachability graph
corresponding to part in red on the Figure 15. With the
reactive semantics applied to process B, the interleaving
of the firings of the transitions of the two processes is
eliminated. The black part of the reachability graph is
therefore deleted with the reactive semantics applied to
process B. This allows reducing the state space without
having to abstract the environment model in order to
reduce the global model (of the component to be checked
and its environment) and then its state space. As a result,
considering the state space corresponding to the red part
of Figure 15, one can conclude that process A is live,
bounded and reversible.

Figure 15: Principle of reactive modular verification

To implement this differentiated semantics in CPN
Tools, it is sufficient to use different priorities between
the component to be checked (default normal priority -
P_NORMAL) and its environment. For example, to
check the train model, we gave maximum priority
(P_HIGH) to the RBC and JTC components (compare
priority of transitions of EVC model in Figure 12 and
RBC model in Figure 13). The priority P_INSTATION
is less than the priority P_HIGH but greater that the
priority P_LOW.

7. ILLUSTRATIVE CASE STUDY
In this section, we will illustrate how to use the previous
generic components to model a railway system. To do
this, we will use as a case study the example presented
by Figure 16.

Figure 16: Example of railway network

(A1)

(B1)

(A2)
(AB)

(B1)

(A2)
(BA)

(B1)

(A2)

(B2)

(A2)

(B3)

(A4)
(AB)

(B1)

(A4)
(BA)

(B1)

(A4)

(B2)

(A4)

(B3)

(A3)
(AB)

(B1)

(A3)
(BA)

(B1)

(A3)

(B2)

(A3)

(B3)

ta1 ta2 ta3

ta2 ta3

ta2 ta3

ta2 ta3

tb1 tb1 tb1

tb2 tb2 tb2

tb3 tb3 tb3

ta4

A1

ta1

A2

ta2

A3

ta3

A4

t4

B1

tb1

B2

tb2

B3

tb3

AB

BA

Process A

Process B

Proc. of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2019
ISBN 978-88-85741-31-7; Bruzzone, Dauphin-Tanguy and Junco Eds

112

It has 4 stations named station A to station D and a
junction for the interconnection of the lines leading to
these stations. Let us suppose that two trains are initially
located in station A and they must go to station C at
different times. To reach station C, they must go through
junction N. The exit door from station A to go to N is
door D. Station A and junction N are connected by Line
1 managed by RBC1. To reach Station C, trains must exit
through door C and take Line 3 controlled by RBC2.

7.1. The global model
Following the decomposition of Figure 3, one abstracts
the railway control system as composed of two EVC to
model the trains (EVC1 and EVC2), one RBC for line 1
(RBC1) and another one fore line 3 (RBC2) and JTC1 to
model the controller of junction N.
In the global layer (Figure 17), each instance is modeled
as a substitution transition and is parametrized by its
configuration place. As an example, the configuration
place of EVC1 instance is called T1info and the
configuration place of EVC2 is called T2info. In order to
have a more compact representation, a unique
configuration place with a compound colored token in a
form of (4) to represent both the train identifier and the
necessary train attributes is used.

�Identifier, Attribute	1, . . , Attribute	n� (4)

As an example, the initial marking of T1info is:
�-�.1/012� � 1`�.34/0�1�, 5646/207, 5646/208�(5)

Train(1) is the identifier of the first train. StationA and
StationC define respectively the departure and the
destination station of Train(1). In, the same way is
defined the parameters of each RBC.

�-�9:81;012� �

1`�9:8�1�, 5646/207, <, =2>?=, 7, 20� (6)

Equation (6) means that RBC(1) controls the line from
StationA gate D to junction N gate A. This line is
composed of 20 blocks. This last parameter is essential
for the RBC to know when a train has reach the end of
the line that it controls in order to request to the JTC a
route for the train (corresponds to the firing of transition
RouteReq in RBC model in Figure 13) .
The interface places enable to model the communication
from one type of components to another type of
components. For example, in Figure 17 the place
EVC2RBC models the communications from the EVC
instances to the RBC instance. In this case study, it is not
possible for EVC to request itself a route to the junction
N. The structure of colored tokens put in the interface
places enables to define the concrete participants of the
communication. As an example, it is worth to notice the
initialization of place JTC2RBC in Figure 17.

�-�@.829:8� � 1`�.AB?9?C, 5646/207, 9:8�1�,

�.34/0�1�, 5646/207, 5646/208�� (7)

This initialization enables us to simulate the request of
StationA that requests RBC(1) to perform a
preregistration of Train(1) that is arriving on the line
controlled by RBC(1). It also gives to RBC(1) all the data
of the itinerary of Train(1). One can also notice that the
initial marking of T1BM is a list of data that are like
(Line(1), (Inline,1,TC(1)) or (Line(0), (InStation, 20,
TC(1)). Line(1) means that it defines a train position on
Line(1). As an example (Line(1), (Inline,1, TC(1)) means
that the train is on the block 1 of the Line(1) and will
reach NodeN by its track section TC(1). (Line(0),
(InStation, 20, TC(1)) means that Train(1) is in a node
(station or junction) on the track section TC(1) and is
arrived by the block 20 of the line before the node. So the
list allows modeling the sequence of the train positions
for simulation or the construction of its reachability
graph. The global layer model can be easily modified by
connecting/disconnecting components to the
corresponding interfaces.

Figure 17: An example of global model based on
instantiation of generic components.

7.2. Reachability graph construction for formal
verification of a generic component

In order to perform properties’ verification, it is
necessary to build the reachability graph of the
component to be checked with its environment.
Considering the global PN model of section 7.1, let us
suppose that one wants to check EVC component (more
precisely EVC1). To apply the reactive modular
verification, let us modified the priority of all the
transitions of RBC1, RBC2 and Node N, from
P_NORMAL to P_HIGH (a way to perform reactive
semantics). The priority of transitions of the EVC
components remain at P_NORMAL (a way to keep the
token game semantics) except the transitions InBlock and
InNode that keep the priority P_LOW.
To give an idea of the complexity of this verification, we
have constructed the reachability graph of the global
model of our case study by just considering the evolution
of one train (Train(1) corresponding to EVC1) going
from station A to station C. This corresponds to the initial
marking in Figure 17. One can note that the T2BTM place
that models Train(2) positions is not marked indicating
that it remains immobilized.
Table 1 shows the results of this evaluation in terms of
size and duration. They show the interest of building

Proc. of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2019
ISBN 978-88-85741-31-7; Bruzzone, Dauphin-Tanguy and Junco Eds

113

reachability graphs using a mix of the two semantics
(reactive semantics for the environment). These results
have been obtained on an Intel CORE i7-5600U CPU at
2,60 GHz, with 16 GO of RAM.

Table 1: Comparison of the size of the reachability
graphs constructed with the two semantics

As indicated by the fact that the number of arcs is equal
to the number of states minus one, in the case of reactive
semantics, the reachability graph is linear. The last state
is blocking, modeling the arrival at station C. With the
same initial marking and the use of token semantics for
all the global model, the reachability graph is much
larger. One can especially note that it has three times
more arcs than nodes indicating the strong interleaving
of the firing of transitions due to this semantics. This
example illustrates the great efficiency of the
construction of reachability graphs using reactive
semantics for the environment.
The obtained reachability graph shows that our model is
correct since the train has effectively followed its
itinerary. In the obtained scenario, all the transitions of
the EVC have been fired at least once (once for the
transitions corresponding to the travel inside the node N,
and several times for the others), proving that the global
models is L1-live (Murata, 1989). In fact the
modification of the global model with a transition that
resumes the initial marking of this case study from de
dead-marking obtained when Train(1) reaches station C,
one shows that the EVC model is live and bounded.
Applying this approach to each generic component,
proves that all our generic components are live and
bounded.

8. CONCLUSIONS AND PERSPECTIVES
This work made it possible to propose a decentralized
control architecture for the complete automation of rail
system control. The objective is to go far beyond the
automation of train operation as envisaged by the
autonomous train concept. It showed that it was possible
to develop a system modeling approach based on generic
components placed in a library. The developed
components correspond to our points of view that will be
refined through standardization. They do not integrate all
the complexity of modelling such systems. For example,
we did not take into account the modeling of a train's
operating modes, which include dozens of modes. We
have not modelled train speed regulation that would
require the use of a formalism such as hybrid PN (David
and Alla, 2005). In this context, the question will arise of
having a formalism that allows the characteristics of the
two types of PN to be integrated.

The use of reactive semantics is an important way
to reduce the combinatorial explosion of reachability
graphs. The proposed approach allows proving the
correctness of each generic component building a kind of
global model with a distinction of the component to be
checked and its environment. However, in order to check
some properties such as the absence of possibility of
collisions between two trains, it is necessary to develop
another approach of verification that takes into account a
more global model with several instances of trains.

REFERENCES
Christos G. Cassandras, & Lafortune, S., 2008.

Introduction to discrete event systems. NewYork
(USA), Springer.

Christensen, S., & Mortensen, K. H. Design/CPN ASK-
CTL Manual, version 0.9, 1996. URL
http://cpntools.org/_media/documentation/askctl
manual. pdf.[checked on 2013-12-16].

David, R., & Alla, H, 2005. Discrete, continuous, and
hybrid Petri nets (Vol. 1). Berlin: Springer.

Eshuis R, Dehnert J. 2003. Reactive Petri Nets for
Workflow Modeling. Appl Theory Petri Nets 2003,
vol. 2679, pp. 295–314.

European Railway Agency. 2016. ERTMS/ETCS
System Requirements Specification (SUBSET-
026) v3.6.0

Jensen, K., & Rozenberg, G, 2012. High-level Petri nets:
theory and application. Springer Science &
Business Media.

Jensen, K., Kristensen, L.M. & Wells, L., 2007.
Coloured Petri Nets and CPN Tools for modelling
and validation of concurrent systems. International
Journal on Software Tools for Technology
Transfer, 9(3–4), pp. 213–254.

Lusby, R. M., Larsen, J., Ehrgott, M., & Ryan, D. M.
(2013). A set packing inspired method for real-
time junction train routing. Computers &
Operations Research, 40(3), pp. 713-724.

Murata, T., 1989. Petri Nets: Properties, Analysis and
Applications. Proceedings of the IEEE, 77(4),
pp. 541–580.

Vanit-Anunchai, S., 2014. Experience using Coloured
Petri Nets to Model Railway Interlocking Tables.
In 2nd French Singaporean Workshop on Formal
Methods and Applications (FSFMA’2014).
Singapore, pp. 17–28.

Xie, Y., Khlif-bouassida, M. & Toguyeni, A., 2017.
Well-formed Petri Net Based Patterns for
Modeling Logic Controllers for Autonomous
Trains. Proc. of IMAACA2017, Barcelona
(Spain), pp. 25–34

Yin, J., Tang, T., Yang, L., Xun, J., Huang, Y., & Gao,
Z., 2017. Research and development of automatic
train operation for railway transportation systems:
A survey. Transportation Research Part C:
Emerging Technologies, 85, 548-572.

Type of
semantics

Number
of nodes

Number
of arcs

Number of dead
markings

Duration
(in seconds)

Token
semantics

5414 15042 35 13

Mix of the two
semantics

38 37 1 1

Reachability graph

Proc. of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2019
ISBN 978-88-85741-31-7; Bruzzone, Dauphin-Tanguy and Junco Eds

114

