IDA-PBC controller for dc-dc power electronic converters with nonlinear load enhanced with additive disturbance estimation

  • Juan Tomassini  , 
  • Sergio Junco  , 
  • Alejandro Donaire 
  • aCONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
  • bLAC, Laboratorio de Automatización y Control, Departamento de Control, Escuela de Ingeniería Electrónica, Facultad de Ciencias Exactas e Ingeniería, Universidad Nacional de Rosario, Argentina
  • cUniversity of Newcastle, School of Engineering, Australia
Cite as
Tomassini J., Junco S., Donaire A. (2019). IDA-PBC controller for dc-dc power electronic converters with nonlinear load enhanced with additive disturbance estimation. Proceedings of the 12th International Conference on Integrated Modeling and Analysis in Applied Control and Automation (IMAACA 2019), pp. 115-123. DOI: https://doi.org/10.46354/i3m.2019.imaaca.015

Abstract

This work presents the design of stabilising controllers for the DC-DC boost and buck-boost power electronic converters using a passivity-based approach. The first step in the controller design is the definition of a convenient transformation of the state vector. The first variable of the transformation is the flat output of the converter, and the second is a bijective function of the charge of the output capacitor. This alternative to a previous work by the authors, which also considers flat outputs for the state vector transformation, ensures the bijectivity of the complete transformation. The disadvantage is that the designer is not allowed to choose a closed loop energy function, thus having to solve a partial differential equation to find one. A nonlinear state feedback control law is finally obtained. Disturbance rejection is addressed using a dynamic estimator of the load current, using a technique from the literature. The controller performance is validated via digital simulation.

References

  1. He, W., Soriano-Rangel, C. A., Ortega, R., Astolfi, A., Mancilla-David, F., & Li, S. (2018). Energy
    shaping control for buck–boost converters with unknown constant power load. Control
    Engineering Practice, 74, 33-43.
  2. He, W., Soriano-Rangel, C. A., Ortega, R., Astolfi, A., Mancilla-David, F., & Li, S. (2018). Energy
    shaping control for buck–boost converters with unknown constant power load. Control
    Engineering Practice, 74, 33-43.
  3. Mohan, N., Undeland, T., & Robbins, W. (1995). Power Electronics: converters, applications
    and design. John Wiley & Sons, INC.
  4. Ojo, J. O. (April de 2019). Address from the Editor-In- Chief of the IEEE J. Emerging & Selected
    Topics in Power Electronics. Obtenido de https://www.ieee-pels.org/publications/ieeejournal-
    of-emerging-and-selected-topics-inpower lectronics
  5. Ortega, R., & García-Canseco, E. (2004). Interconnection and Damping Assignment
    Passivity-Based Control: A Survey. European Journal of Control, 10, 432-450. doi:http://dx.doi.org/10.3166/ejc.10.432-450
  6. Sepulchre, R., Jankovic, M., & Kokotovic, P. V. (2012). Constructive nonlinear control. Springer
    Science & Business Media
  7. Tomassini, J., Donaire, A., & Junco, S. (2018). Energy- And flatness-based control of DC-DC
    converters with nonlinear load. International Conference on Integrated Modeling and
    Analysis in Applied Control and Automation (IMAACA 2018). Budapest, Hungary.
  8. Tomassini, J., Donaire, A., Junco, S., & Pérez, T (2017). A port-Hamiltonian approach to
    stabilization and disturbance rejection of DCDC Buck converter with nonlinear load. ASCC
    2017 – the 2017 Asian Control Conference , 17 – 20 December 2017, Gold Coast, Australia