
 
 

 

  

 

 

  

 

 
(a)tomajuan@fceia.unr.edu.ar, (b)sjunco@fceia.unr.edu.ar, (c)alejandro.donaire@newcastle.edu.au 

 

 

 

ABSTRACT 

This work presents the design of stabilising 

controllers for the DC-DC boost and buck-boost power 

electronic converters using a passivity-based approach. 

The first step in the controller design is the definition of 

a convenient transformation of the state vector. The first 

variable of the transformation is the flat output of the 

converter, and the second is a bijective function of the 

charge of the output capacitor. This alternative to a 

previous work by the authors, which also considers flat 

outputs for the state vector transformation, ensures the 

bijectivity of the complete transformation. The 

disadvantage is that the designer is not allowed to 

choose a closed loop energy function, thus having to 

solve a partial differential equation to find one. A 

nonlinear state feedback control law is finally obtained. 

Disturbance rejection is addressed using a dynamic 

estimator of the load current, using a technique from the 

literature. The controller performance is validated via 

digital simulation. 

 

Keywords: DC-DC power electronic converters, 

passivity-based control, port-Hamiltonian systems, 

flatness-based control, Bond Graphs. 

 

1. INTRODUCTION 

Due to their versatility, high efficiency, controllable 

behaviour, fast dynamics and wide-range of power 

management, Power Electronic Converters (PEC) are 

ubiquitous and pervade most of the cutting-edge 

engineering application areas. Indeed, they can be found 

in electrical drives, switched-mode power supplies, 

battery chargers, uninterrupted power supplies, all type 

of mobile devices, distributed generation and renewable 

energy conversion systems, embedded in electric/hybrid 

vehicles (cars, trains and airplanes), etc. Closed loop 

control design of PEC is a key topic, as for high 

performance applications not only  asymptotic stability 

must be assured but performance too. The challenge in 

the coming years lies in developing new techniques at 

the lowest possible cost, size and  weight for emerging 

applications (Ojo, 2019). This motivates a new 

approach of solving control problems in PEC feeding 

nonlinear loads.  

PEC are highly nonlinear dynamical systems whose 

dynamics can be represented by means of averaged 

models, where the control input is the duty cycle of the 

PWM controlled electronic switch. For the second order 

boost and buck-boost converters models, the duty cycle 

has relative degree one with respect to both system 

states, making the controller synthesis a difficult task. 

This obstacle can be overcome through a conveniently 

designed coordinate transformation using the flat 

variable of the converter and choosing the other variable 

as a bijective function of the output capacitor charge to 

ensure output voltage regulation.  

The rationale of the controller design relies on finding a 

state feedback control law in the new coordinates using 

interconnection and damping assignment passivity-

based control (IDA-PBC), such that the closed loop can 

be written in port-Hamiltonian (pH) form. This allows 

using the closed loop Hamiltonian as a Lyapunov 

candidate function to analyze stability. As the 

coordinate transformation is bijective, asymptotic 

stability of the output voltage is achieved via regulation 

of the equivalent equilibrium of the transformed 

coordinates.  

The design is enhanced using a disturbance dynamic 

estimator (He, et al., 2018) allowing the system to reject 

constant additive disturbances on the load side. 

The remainder of this article is organized as follows: 

Section 2 presents the averaged models of the PEC and 

the control problem formulation. Section 3 introduces 

the general concepts of IDA-PBC and presents the 

controller design for the PEC. Disturbance estimators 

are developed in Section 4. Section 5 validates the 

controller designs via digital simulation, and 

conclusions are given in Section 6. 

 

2. AVERAGED MODELS OF PEC 

In this section the averaged models of the Boost and the 

Buck-Boost converters are presented. Figure 1 shows 

the equivalent circuits of the PEC under study. The 

inductance and the capacitor are assumed linear 

components with known parameters 𝐿 and 𝐶. The 

averaged duty cycle of the electronic switch is 

represented by the continuous control signal 𝑢 ∈  (0,1). 

It is assumed that the PEC operate in the continuous 

conduction mode (CCM), and the state variables 

magnetic flux and electric charge (𝜓, 𝑞) > (0,0)  ∀ 𝑡. 

Further, ℎ(𝑞) is the current absorbed by a truly 

dissipative nonlinear load satisfying 
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{ℎ(𝑞) >  0 ∀ 𝑞 >  0}. The load and capacitor terminal 

voltages being the same allows to write the load current 

in terms of the capacitor charge. The reader is referred 

to (Mohan, Undeland, & Robbins, 1995) for further 

details on PEC averaged models. 

Figure 1: Equivalent Circuits of (a) the boost converter, 

and (b) the buck-boost converter. 

2.1. Boost Converter 

The averaged state equations of the boost converter are 

given in (1): 

𝜓̇ = 𝐸 − 𝑢
𝑞

𝐶

𝑞̇ = 𝑢
𝜓

𝐿
− ℎ(𝑞)

 ; with {𝑢 ∈ ℝ | 𝑢 ∈ (0,1)} (1) 

2.2. Buck-Boost Converter 

The averaged state equations of the boost converter are 

given in (2): 

𝜓̇ = 𝑢𝐸 − (1 − 𝑢)
𝑞

𝐶

𝑞̇ = (1 − 𝑢)
𝜓

𝐿
− ℎ(𝑞)

 ; with {𝑢 ∈ ℝ | 𝑢 ∈ (0,1)} (2) 

2.3. Control Problem Formulation 

The control problem for the converters consists in 

finding a map 𝜉 such that the state feedback controller: 

 𝑢 = 𝜉(𝜓, 𝑞) (3) 

stabilizes the output voltage to a desired set-point 𝑣⋆

whilst ensuring internal stability. Since 𝑣 = 𝑞/𝐶, then 

output voltage regulation is equivalent to regulation of 

capacitor charge to the set point 𝑞⋆ = 𝐶𝑣⋆. Internal

stability is ensured if the equilibrium (𝜓⋆, 𝑞⋆) is stable.

3. PASSIVITY-BASED CONTROL

In this section, the general ideas of passivity-based 

control (PBC) for pH systems are first summarized and 

then the main result of the article is presented. Prior to 

the controller design, the coordinate transformation for 

each PEC is introduced. This will end up in a very 

similar matching equation for both converters reducing 

the effort needed to solve it. 

3.1. General Concepts of IDA-PBC 

Consider a dynamical system 

𝑥̇ = 𝑓(𝑥) + 𝑔(𝑥)𝑢 (4) 

with 𝑥 ∈ ℝ𝑛 and 𝑢 ∈ ℝ𝑚, the problem of stabilizing (4)

using IDA-PBC consist on finding a mapping 𝜉: ℝ𝑛 →
ℝ𝑚 such that the system (4) in closed loop with the

controller 𝑢 = 𝜉(𝑥) can be written in pH form as 

follows: 

𝑥̇ = [𝑱(𝑥) − 𝑹(𝑥)]
𝜕𝐻(𝑥)

𝜕𝑥 (5) 

where the matrices 𝑱 = −𝑱𝑇 and 𝑹 = 𝑹𝑇 ≥ 0 describe

the interconnection and dissipation structure, and the 

function 𝐻:ℝ𝑛 → ℝ is the Hamiltonian representing the

total energy stored in the system. Let 𝑥⋆ be the

minimizer of the Hamiltonian: 𝑥⋆ = argmin{𝐻(𝑥)},
then 𝑥⋆ is a stable equilibrium point of the system (5).

Moreover, under some detectability conditions, the 

equilibrium is asymptotically stable. If the following 

matching equation has a solution: 

𝑔(𝑥)⊥𝑓(𝑥) = 𝑔(𝑥)⊥[𝑱(𝑥) − 𝑹(𝑥)]
𝜕𝐻(𝑥)

𝜕𝑥 (6) 

with 𝑔(𝑥)⊥ is the full-rank left annihilator of 𝑔(𝑥), then

the control law can be synthesized as follows 

𝑢 = [𝑔𝑇𝑔]−1𝑔𝑇 [𝑓 − (𝑱 − 𝑹)
𝜕𝐻(𝑥)

𝜕𝑥
 ] (7) 

See (Ortega & García-Canseco, 2004) for further details 

on IDA-PBC method. 

3.2. Rationale of the Design Method 

In the sequel, prior to the controller design a coordinate 

transformation for each converter will be introduced to 

ease the effort needed for the controller synthesis. The 

main methodological contribution of this paper consist 

in providing: 

 A bijective state transformation (𝜓, 𝑞) →
(𝑦, 𝑧) ensuring that driving (𝑦, 𝑧) → (𝑦⋆, 𝑧⋆) is

equivalent to drive (𝜓, 𝑞) → (𝜓⋆, 𝑞⋆)

 A matching equation with a similar structure

for both converters, which can be easily solved

by integration
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 Finding a similar control law for both

converters under the proposed coordinate

transformation.

3.3. Boost Converter  

3.3.1. Coordinate transformation 

Consider the following coordinate transformation: 

𝑦 =
𝜓2

2𝐿
+

𝑞2

2𝐶

𝑧 =
𝑞2

2𝐶

(8) 

The original variables, are related to the new ones  as 

follows: 

𝜓 = √2𝐿 (𝑦 − 𝑧)
1

2

𝑞 = √2𝐶 𝑧
1

2

(9) 

Time derivation of 𝑦 and 𝑧 leads to the following 

dynamics: 

𝑦̇ = 𝐸
𝜓

𝐿
−

𝑞

𝐶
 ℎ(𝑞) 

𝑧̇ =
𝑞

𝐶
𝑢

𝜓

𝐿
−

𝑞

𝐶
ℎ(𝑞) 

(10) 

A new control input is defined as 𝑚 = 𝑢
𝑞

𝐶

𝜓

𝐿
. In terms of 

the new coordinates and the load power 𝑃(𝑞) =
𝑞

𝐶
ℎ(𝑞),

the boost converter state space model can be written in 

the form [𝑦̇ 𝑧̇]⊤ = 𝑓(𝑦, 𝑧) + 𝑔 𝑚:

[
𝑦̇
𝑧̇
] = [

𝐸 √
2

𝐿
 (𝑦 − 𝑧)

1

2 − 𝑃𝑧(𝑧)

−𝑃𝑧(𝑧)

] + [
0
1
]𝑚 (11) 

where 𝑃𝑧(𝑧) = 𝑃(𝑞(𝑧)) stands for the load power, in

terms of the coordinate 𝑧. As expected, the new states 

equations are power balances. Recall that 𝑦 stands for 

the total energy stored in the system and 𝑧 for the 

energy stored in the capacitor. As the averaged model is 

valid for (𝜓, 𝑞) > (0,0), then  (𝑦 − 𝑧) > 0, ∀ (𝑦, 𝑧). 

3.3.2. Controller Design 

We present here the main result for the boost converter, 

under the assumption of a known load VA (Volt-

Ampère) characteristic. 

Proposition 1: Consider the following controller for 

system (11): 

𝑚 = 𝐸 √
2

𝐿
 (𝑦 − 𝑧)

1

2 − 𝑃𝑧(𝑧
⋆) + 𝐾𝑦(𝑦 − 𝑦⋆) + (12) 

𝑃𝑧(𝑧) + 𝑟 (𝐸 √
2

𝐿
 (𝑦 − 𝑧)

1

2 − 𝑃𝑧(𝑧))

with 𝐾𝑦 > 0 and 𝑟 > 0. 𝑧⋆ = 𝑞⋆2
/(2𝐶) is the desired

equilibrium value for the capacitor energy,  and 𝑦⋆ =
𝜓⋆2

2𝐿
+

𝑞⋆2

2𝐶
 is the equilibrium for the total stored energy 

in the boost converter. It is assumed that 
𝜕𝑃𝑧(𝑧)

𝜕𝑧
≥  0 ∀ 𝑧 > 0. System (11) in closed loop with the 

controller given in (12) has the following properties: 

P1. The closed loop dynamics can be written in pH 

form as given in (13) with the Hamiltonian in 

(14): 

[
𝑦̇
𝑧̇
] = [

0 −1
1 −𝑟

] ⋅ [

𝜕𝐻(𝑦,𝑧)

𝜕𝑦

𝜕𝐻(𝑦,𝑧)

𝜕𝑧

] (13) 

𝐻(𝑦, 𝑧) = 𝐸
2

3
√

2

𝐿
(𝑦 − 𝑧)

3

2 + ∫ 𝑃𝑧(𝛼)𝑑𝛼
𝑧

0
+

𝐾𝑦

2
(𝑦 −

𝑃𝑧(𝑧⋆)

𝐾𝑦
− 𝑦⋆)

2 (14) 

𝐻(𝑦, 𝑧) is a positive definite function, as 𝑃(𝑞(𝑧)) =

𝑃𝑧(𝑧) is also a positive definite function ∀ 𝑧 > 0.

From (13), the closed loop interconnection and 

dissipation matrices are the following constant matrices: 

𝑱 = [
0 −1
1 0

] and 𝑹 = [
0 0
0 𝑟

] 

P2. The controller ensures the asymptotic stability 

of the equilibrium (𝑦⋆, 𝑧⋆).

Proof: The claim in P1 is easily proved taking into 

account that: 

[

𝜕𝐻(𝑦,𝑧)

𝜕𝑦

𝜕𝐻(𝑦,𝑧)

𝜕𝑧

] =

[
 
 
 𝐸 √

2

𝐿
 (𝑦 − 𝑧) 

1

2 − 𝐾𝑦(𝑦 − 𝑦⋆) − 𝑃𝑧(𝑧
⋆)

−𝐸 √
2

𝐿
 (𝑦 − 𝑧) 

1

2 + 𝑃𝑧(𝑧) ]
 
 
 

(15) 

and matching 𝑦̇ given by (11) and (13). The next step is 

to use (12) in (11) to obtain: 

𝑧̇ =  𝐸 √
2

𝐿
 (𝑦 − 𝑧)

1

2 − 𝑃𝑧(𝑧
⋆) + 𝐾𝑦(𝑦 − 𝑦⋆) +

+𝑟 (𝐸 √
2

𝐿
 (𝑦 − 𝑧)

1

2 − 𝑃𝑧(𝑧))
(16) 

𝑧̇ =
𝜕𝐻(𝑦,𝑧)

𝜕𝑦
− 𝑟 

𝜕𝐻(𝑦,𝑧)

𝜕𝑧 (17) 
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completing the proof of the claim in P1. Asymptotic 

stability will be proved using the closed loop 

Hamiltonian (14) as a Lyapunov candidate function. 

First recall that  √(2/𝐿) (𝑦 − 𝑧)
1

2 = 𝐸 (𝜓/𝐿) : 

𝐸 √
2

𝐿
 (𝑦⋆ − 𝑧⋆)

1

2 = 𝐸
𝜓⋆

𝐿
= 𝑃(𝑞⋆) = 𝑃𝑧(𝑧

⋆) (18) 

Then, we conclude: 

[

𝜕𝐻(𝑦,𝑧)

𝜕𝑦

𝜕𝐻(𝑦,𝑧)

𝜕𝑧

]

(𝑦⋆,𝑧⋆)

= [
0
0
] (19) 

Integrability condition is fulfilled as: 

𝜕

𝜕𝑧
(

𝜕𝐻(𝑦,𝑧)

𝜕𝑦
) =

𝜕

𝜕𝑦
(

𝜕𝐻(𝑦,𝑧)

𝜕𝑧
) = −𝐸

1

2
√

2

𝐿
 (𝑦 − 𝑧) 

−1

2 (20) 

Finally, it must be ensured that (𝑦⋆, 𝑧⋆) is a minimum

of 𝐻(𝑦, 𝑧):  

𝜕

𝜕𝑦
(

𝜕𝐻(𝑦,𝑧)

𝜕𝑦
)|

(𝑦⋆,𝑧⋆)
=

𝐸

2
 √

2

𝐿
(𝑦⋆ − 𝑧⋆)−

1

2 + 𝐾𝑦𝑦⋆

𝜕

𝜕𝑦
(

𝜕𝐻(𝑦,𝑧)

𝜕𝑦
)|

(𝑦⋆,𝑧⋆)
> 0 

(21) 

and the determinant of the Hessian of 𝐻(𝑦, 𝑧) evaluated 

in the equilibrium: 

∇2𝐻(𝑦, 𝑧)|(𝑦⋆,𝑧⋆) =
𝐸

2
 √

2

𝐿
(𝑦⋆ − 𝑧⋆)−

1

2  (𝐾𝑦 𝑦⋆ +

𝜕𝑃𝑧(𝑧)

𝜕𝑧
|
𝑧⋆

) + (𝐾𝑦  𝑦⋆ ⋅  
𝜕𝑃𝑧(𝑧)

𝜕𝑧
|
𝑧⋆

) 
(22) 

under the assumption that 
𝜕𝑃(𝑞)

𝜕𝑞
≥ 0 

(⇒  
𝜕𝑃𝑧(𝑧)

𝜕𝑧
≥  0 ;   ∀ 𝑞 ≥ 0) and recall 𝐾𝑦 > 0 then

∇2𝐻(𝑦, 𝑧)|(𝑦⋆,𝑧⋆) > 0. This completes the proof. ■ 

Remark 1: 𝑃𝑧(𝑧) = 𝑃(𝑞(𝑧)) and 
𝜕𝑃𝑧(𝑧)

𝜕𝑧
=

𝜕𝑃(𝑞(𝑧))

𝜕𝑞

𝜕𝑞(𝑧)

𝜕𝑧
 . 

𝜕𝑞(𝑧)

𝜕𝑧
> 0, this is given by the coordinate 

transformation. Then, if 
𝜕𝑃(𝑞)

𝜕𝑞
≥ 0 ⇒ 

𝜕𝑃𝑧(𝑧)

𝜕𝑧
≥ 0.

Remark 2: Equilibrium (𝜓, 𝑞) = (𝜓⋆, 𝑞⋆) is achieved

through the equilibrium of the energy variables (𝑦, 𝑧) =
(𝑦⋆, 𝑧⋆).

3.4. Buck-Boost Converter  

3.4.1. Coordinate transformation 

Recall the dynamics of this converter given by system 

(2). The following convenient coordinate transformation 

is proposed: 

𝑦 =
𝜓2

2𝐿
+

𝑞2

2𝐶
+ 𝐸𝑞 

𝑧 =
𝑞2

2𝐶
+ 𝐸𝑞 

(23) 

The original variables then, can be written in terms of 𝑦 

and 𝑧 as: 

𝜓 = √2𝐿 (𝑦 − 𝑧)
1

2

𝑞 = 𝐶 ((𝐸2 +
2

𝐶
𝑧)

1

2
− 𝐸) 

(24) 

Time derivation of 𝑦 and 𝑧 leads us to the following 

dynamics: 

𝑦̇ = 𝐸
𝜓

𝐿
− (

𝑞

𝐶
+ 𝐸)  ℎ(𝑞) 

𝑧̇ = (𝐸 +
𝑞

𝐶
)

𝜓

𝐿
(1 − 𝑢) − (𝐸 +

𝑞

𝐶
) ℎ(𝑞) 

(25) 

For this case the new control input defined is 𝑚 =

(1 − 𝑢) (
𝑞

𝐶
+ 𝐸)

𝜓

𝐿
, and the current absorbed by the load 

in terms of 𝑧 is written as ℎ(𝑞(𝑧)) = ℎ𝑧(𝑧). It is

convenient to define the following quantity 𝑃𝑧(𝑧) =

ℎ𝑧(𝑧) (𝐸2 +
2

𝐶
𝑧)

1

2
, which has units of power. Then, the 

state space dynamics of the buck boost converter can be 

written in the form [𝑦̇ 𝑧̇]⊤ = 𝑓(𝑦, 𝑧) + 𝑔 𝑚:

[
𝑦̇
𝑧̇
] = [

𝐸 √
2

𝐿
 (𝑦 − 𝑧)

1

2 − 𝑃𝑧(𝑧)

−𝑃𝑧(𝑧)

] + [
0
1
]𝑚 (26) 

As expected, once again, the new state equations are 

power balances. Recall that 𝑦 stands for the total energy 

stored in the converter plus the term 𝐸𝑞, and the 

variable 𝑧 is the output capacitor energy plus the term 

𝐸𝑞. The averaged model is valid for (𝜓, 𝑞) > (0,0) 

implying that 𝑦 > 𝑧 > 0, then  (𝑦 − 𝑧) > 0, ∀ (𝑦, 𝑧). 

Recalling ℎ𝑧(𝑞) > 0 then 𝑃𝑧(𝑧) > 0.

3.4.2. Controller Design 

The controller is designed for system (26), assuming a 

known load VA characteristic. 

Proposition 2: Consider the following controller for 

system (26): 

𝑚 = 𝐸 √
2

𝐿
 (𝑦 − 𝑧)

1

2 − 𝑃𝑧(𝑧
⋆) + 𝐾𝑦(𝑦 − 𝑦⋆) +

𝑃𝑧(𝑧) + 𝑟 (𝐸 √
2

𝐿
 (𝑦 − 𝑧)

1

2 − 𝑃𝑧(𝑧))
(27) 
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with 𝐾𝑦 > 0 and 𝑟 > 0. 𝑧⋆ =
𝑞⋆2

2𝐶
+ 𝐸𝑞⋆ and 𝑦⋆ =

𝜓⋆2

2𝐿
+

𝑞⋆2

2𝐶
+ 𝐸𝑞⋆. It is assumed that 

𝜕𝑃𝑧(𝑧)

𝜕𝑧
≥ 0 ∀ 𝑧 > 0. 

Remark 3: Properties P1 and P2 are guaranteed by the 

control law (27), since the coordinate transformation 

defined by (23) has the same structure as (8) defined for 

the boost converter. Hence the proof will be omitted.  

4. DISTURBANCE ESTIMATION

A constant disturbance estimation method is presented 

in this section. Constant current disturbances in the 

output stage of the two converters under study are 

considered. The method is based on the design for 

unknown constant power load in (He, et al., 2018) and 

is an Immersion & Invariance design.  

4.1. Boost Converter 

Consider the state equation of the capacitor charge: 

𝑞̇ = 𝑢
𝜓

𝐿
− ℎ𝑜(𝑞) − 𝑖̅ (28) 

where 𝑖 ̅is the constant unknown current disturbance and 

ℎ𝑜(𝑞) is the known original nonlinear load. The

estimated current is defined as:   

𝑖̂ = 𝑖̅ + 𝑖 ̃ (29) 

hence 𝑖̃ is the estimation error that must be driven to 

zero. To do so, consider the following proposition: 

Proposition 3: Dynamic estimator for 𝑖:̅ 

𝑖̂ = −
1

2
𝑘𝑞 𝑞 + 𝑘𝑞𝛼

𝛼̇ =
1

2
(𝑢

𝜓

𝐿
− ℎ𝑜(𝑞) − 𝑖̂)

(30) 

where 𝑖̂ converges to 𝑖,̅ with 𝑘𝑞 > 0.

Proof: Computing the time derivative of 𝑖̂ and then 

using the expression given for 𝛼̇ yields: 

𝑖̂̇ = −
1

2
𝑘𝑞 𝑞̇ + 𝑘𝑞𝛼̇

𝑖̂̇ = −
1

2
𝑘𝑞 (𝑢

𝜓

𝐿
− ℎ𝑜(𝑞) − 𝑖)̅ + 𝑘𝑞

1

2
(𝑢

𝜓

𝐿
−

ℎ𝑜(𝑞) − 𝑖̂) =  
1

2
𝑘𝑞𝑖̅ −

1

2
𝑘𝑞𝑖̂

𝑖̂̇ = −
1

2
𝑘𝑞𝑖̃ 

(31) 

As 𝑖 ̅ is constant ⇒ 𝑖̅̇ = 0 ⇒ 𝑖̂̇ = 𝑖̃.̇ Finally, 𝑖̃̇ = −
1

2
𝑘𝑞𝑖̃ ,

completing the proof. ■ 

The gain 𝑘𝑞 will then be used to tune the time response

of the estimator.  

4.2. Buck-Boost Converter 

Consider a constant unknown disturbance on the output 

stage of this converter. Then, the capacitor charge 

dynamics is: 

𝑞̇ = (1 − 𝑢)
𝜓

𝐿
− ℎ𝑜(𝑞) − 𝑖̅ (32) 

where 𝑖 ̅is the constant unknown current disturbance and 

ℎ𝑜(𝑞) is the known original nonlinear load.

Proposition 4: Dynamic estimator for 𝑖:̅ 

𝑖̂ = −
1

2
𝑘𝑞 𝑞 + 𝑘𝑞𝛼

𝛼̇ =
1

2
((1 − 𝑢)

𝜓

𝐿
− ℎ𝑜(𝑞) − 𝑖)̂

(33) 

with 𝑘𝑞 > 0.

Remark 4: The convergence proof of the estimator is 

omitted as it follows the same procedure used for the 

boost converter estimator in the previous subsection.  

4.3. Controller Enhancement 

This section is intended to introduce the disturbance 

estimation into the control law previously designed for 

the PEC under the assumption of a perfectly known 

load VA characteristic and perform an enhancement 

that preserves the desired equilibrium of the output 

voltage. The approach the authors applied in 

(Tomassini, Donaire, Junco, & Pérez, 2017) for the 

Buck converter case is not applicable now as the 

equilibrium of the variable 𝑦 is unknown in presence of 

a disturbance and both gradients of the Hamiltonian 

𝐻(𝑦, 𝑧) depend on both 𝑦 and 𝑧 variables. This 

motivates the estimator design development we propose 

in this section. Taking into account the constant 

disturbance, the total current of the output stage of the 

converter is given by: 

ℎ(𝑞(𝑧)) = ℎ𝑜(𝑞(𝑧)) + 𝑖̅ (34) 

where 𝑖 ̅ is a constant unknown current, so consider the 

following load current estimation: 

ℎ̂(𝑞(𝑧)) = ℎ𝑜(𝑞(𝑧)) + 𝑖̂ = ℎ𝑜(𝑞(𝑧)) + 𝑖̅ + 𝑖̃ (35) 

Recall for both Boost and Buck-Boost converters, the 

term 𝑃𝑧(𝑧) = 𝑃(𝑞(𝑧)) needs the value of 𝑖.̅ The

estimation of 𝑃𝑧:

𝑃̂𝑧(𝑧) = 𝑃𝑧(𝑧) + 𝑃̃𝑧(𝑧) (36) 

with, for the Boost converter: 

𝑃̂𝑧(𝑧) =
𝑞(𝑧)

𝐶
ℎ(𝑞(𝑧)) + 

𝑞(𝑧)

𝐶
𝑖̃ (37) 

and for the Buck-Boost converter: 
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𝑃̂𝑧(𝑧) = (𝐸 +
𝑞(𝑧)

𝐶
) ℎ(𝑞(𝑧)) + (𝐸 +

𝑞(𝑧)

𝐶
) 𝑖̃ (38) 

Using the power estimated functions, the control laws 

(12) and (27): 

𝑚̂ = 𝐸 √
2

𝐿
 (𝑦 − 𝑧)

1

2 − 𝑃̂𝑧(𝑧
⋆) + 𝐾𝑦(𝑦 − 𝑦⋆) +

𝑃̂𝑧(𝑧) + 𝑟 (𝐸 √
2

𝐿
 (𝑦 − 𝑧)

1

2 − 𝑃̂𝑧(𝑧))
(39) 

𝑚̂ = 𝐸 √
2

𝐿
 (𝑦 − 𝑧)

1

2 − 𝑃𝑧(𝑧
⋆) + 𝐾𝑦(𝑦 − 𝑦⋆) +

𝑃𝑧(𝑧) + 𝑟 (𝐸 √
2

𝐿
 (𝑦 − 𝑧)

1

2 − 𝑃𝑧(𝑧)) −

𝑃̃𝑧(𝑧
⋆) + 𝑃̃𝑧(𝑧) − 𝑟𝑃̃𝑧(𝑧) = 𝑚 + 𝑚̃

(40) 

where the (⋅)̃ terms vanish as 𝑖̃ → 0. The closed loop

dynamics in the (𝑦, 𝑧) variables are: 

[
𝑦̇
𝑧̇
] = [

𝐸 √
2

𝐿
 (𝑦 − 𝑧)

1

2 − 𝑃𝑧(𝑧)

−𝑃𝑧(𝑧)

] + [
0
1
] 𝑚 +

+ [
0
1
] 𝑚̃(𝑖̃) 

(41) 

𝑖̃̇ = −
1

2
𝑘𝑞𝑖̃ (42) 

The dynamics given by (41) and (42) define a cascaded 

system. Proposition 4.1 of (Sepulchre, Jankovic, & 

Kokotovic, 2012) ensures asymptotic stability of system 

(41), (42) as the origin of the 𝑖̃-subsystem is 

asymptotically stable. 

5. SIMULATION RESULTS

In this section the controller performance is tested via 

digital simulation on a Buck-Boost converter system. 

The model parameters are 𝐿 = 16𝑚𝐻, 𝐶 = 1.2𝑚𝐹 and 

𝐸 = 50𝑉. The load VA characteristic is defined in 

terms of the capacitor charge in (43) and graphically 

shown in VA characteristic in Figure 2. 

ℎ(𝑞) =
𝑞

𝐶

1

51
− (

𝑞

𝐶

1

51
)

3

+ (
𝑞

𝐶

1

68
)

5

+ atan (
2

3

𝑞

𝐶
) (43) 

Figure 2: Load current, in terms of the output capacitor 

voltage. 

where the capacitor voltage is 𝑣𝑐 = 𝑞/𝐶. The figure

below shows the Load Power and the quantity 

ℎ(𝑞) (𝐸 +
𝑞

𝐶
) where the last stands for the term 𝑃𝑧(𝑧) in

terms of the capacitor voltage: 

(a) 

(b) 

Figure 3:  Load Power (a), and term 𝑃𝑧(𝑞) (b) in terms

of the capacitor voltage. 
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The controller tuning parameters are 𝑘𝑦 = 100 and 𝑟 =

12. In the first simulation set no disturbance is 

considered while in the latter a constant current is 

considered and consequently rejected using a dynamic 

estimator. The controller can incorporate (43) as a 

“lookup table”, with the necessary amount of 

breakpoints. 

 

Remark 5: As for the controller tuning, considering that 

the closed loop is nonlinear, a set of parameters for 𝐾𝑦 

and 𝑟 was obtained using linearization of the closed 

loop around the equilibrium 
𝑞⋆

𝐶
= 50𝑉, for an 

acceptable response time. Finally, noting that 𝐻̇(𝑦, 𝑧) =

−𝑟 (
𝜕𝐻(𝑦,𝑧)

𝜕𝑧
)

2

 it is concluded that the value of the gain 𝑟 

has a direct impact in the response time. The 

performance will be tested for different values of 𝑟 in 

the next subsection.  

 

5.1. Controller performance test 

In this simulation experiment the controller 

performance is tested via an output voltage reference 

change. The initial conditions are set corresponding to 
𝑞

𝐶
= 50𝑉. The output voltage reference (dashed line) is 

changed to 35𝑉 at 𝑡 = 0.1𝑠, then changed to 60𝑉 at 

𝑡 = 0.8𝑠 and finally to 85𝑉 at 𝑡 = 1.4𝑠. Notice that the 

two first reference values correspond to incremental 

negative resistance zone of the load VA characteristic of 

the load. Different response times are obtained by 

tuning the parameter 𝑟 starting with 𝑟 = 12 and 

reducing it. 

 

 
Figure 4: Time plots of the Buck-Boost converter 

original variables for different values of 𝑟. 

 

And the time evolution of the transformed variables: 

 

 
Figure 5: Time plots of the transformed variables for 

different values of 𝑟. 

 

The controller achieves the control objective through 

the regulation of the variables 𝑦 and 𝑧, for output 

reference voltages greater and lower than 𝐸; and 

including the negative incremental resistance zones of 

the load VA characteristic.  

 

5.2. Simulations with disturbance estimator 

In this subsection the controller performance is tested 

with the disturbance estimator implemented. The first 

set of simulations shows only the disturbance rejection 

behaviour while the second set shows how the estimator 

degrades the performance of the controller presented in 

Subsection 5.1.  

 

5.2.1. Disturbance rejection behaviour 

Consider a disturbance of 𝑖̅ = 0.25𝐴 applied at 𝑡 = 0.1𝑠 

when the system is in steady state and regulating an 

output voltage of 50𝑉: 

 

 

(a) 
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(b) 

Figure 6:  Disturbance rejection simulation results for 

estimator parameter 𝑘𝑞 = 10 (a) and 𝑘𝑞 = 140 (b). 

 

The disturbance is satisfactorily rejected thanks to the 

estimator. Note that the response time of the system 

varies not only by means of 𝑘𝑞 but also by 𝑟. This is 

because the estimator dynamics depends on the states 

(𝜓, 𝑞) and on the duty cycle 𝑢.  

 

5.2.2. Controller performance degradation 

For this simulation set, consider the system in 

equilibrium corresponding to 
𝑞

𝐶
= 50𝑉 in presence of a 

disturbance of 𝑖̅ = 0.25𝐴. Estimator parameter 

𝑘𝑞 =  140. The same voltage reference changes used in 

Subsection 5.1 are performed in this simulation set: 

 

 
Figure 7:  Controller performance with disturbance 

estimator implemented. 

 

It is observed that the disturbance estimator degrades 

the transient performance of the whole system, as the 

response time increases and the inductance current 

overshoot is larger. On the other hand the estimator is 

needed to achieve the control objective in presence of a 

disturbance. 

 

6. CONCLUSIONS 

In this paper a control system design method for two 

DC-DC power electronics converters has been 

presented, where the control input acts through the 

system interconnection structure. Flatness–based 

coordinate transformation together with a state 

dependent input transformation allowed to write the 

open loop dynamics of both converters in linear affine 

form with a constant input matrix. This allow for an 

easy solution of the matching equation, usually the most 

difficult task in the IDA-PBC methodology, yielding a 

closed-loop in pH form with constant structure and 

dissipation matrices. 

The main advantage of this solution is that it is not 

restricted to linear loads but works for a wide variety of 

nonlinear loads, including nonlinearities with negative 

incremental resistance in their Volt-Ampère 

characteristic. The resulting control law seems 

complicated in the transformed coordinates but in the 

original variables it can be easily understood as 

composed of a sum of power and energy terms. The 

controller implementation is also a simple task. The 

closed loop performance can be adjusted via 

experimental tuning (digital simulation) of a single 

parameter. 

Instead of adding a PI for disturbance rejection - a 

technically difficult task in this case if intending to 

preserve the pH-form - the alternative of using a 

dynamic estimator was developed, which proved to 

preserve the equilibrium of the transformed variable, 

thus fulfilling the control objective. It is worthy to note 

that, adding the estimator has an impact on the original 

controller, increasing the response time and the current 

overshoot during transients. Increasing the speed of the 

estimator reduces the performance degradation of the 

controller, but demands a higher control effort. 

Depending on the application, a compromise 

relationship between response time and control effort 

must be found by the designer.  

Future work will focus on extending the application of 

this control system design approach to DC electrical 

grids including energy storage and distributed sources, 

where the control of the power flow to satisfy the 

energy management requirements of the system is 

performed by these kind of converters. 
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