Comparison of trajectory tracking and obstacle avoidance strategies for a multi-agent dynamic system

  • Martín Crespo  , 
  • Matías Nacusse  , 
  • Sergio Junco 
  • a,b,cLaboratorio de Automatización y Control (LAC), Departamento de Control, FCEIA, UNR. Rosario, Argentina
  • a,bCONICET: Consejo Nacional de Investigaciones Científicas y Técnicas. Argentina
Cite as
Crespo M., Nacusse M., Junco S. (2019). Comparison of trajectory tracking and obstacle avoidance strategies for a multi-agent dynamic system. Proceedings of the 12th International Conference on Integrated Modeling and Analysis in Applied Control and Automation (IMAACA 2019), pp. 124-133. DOI: https://doi.org/10.46354/i3m.2019.imaaca.016

Abstract

This paper designs different laws for formation control and obstacle avoidance for a group of robots with holonomic dynamics and presents a set of simulations that validate and compare them. The Bond Graph methodology, used to design the control laws, together with the physical interpretation of both the obstacles and the interaction between the robots, allows addressing the problem with an energy-based approach. A multi agent scheme is proposed where a leader drives a formation of agents through a desired path. The formation is organized in different hierarchy levels and the control laws for the robots arise from considering the interaction among them through virtual dampers and springs. Two different techniques are addressed for collision avoidance and three scenarios are presented to test the different techniques for coordinated tracking and obstacle collision avoidance. Simulation results are presented to show the good performance of the control system.

References

  1. A., G., & R., B. (1993). Real-time collision avoidance of manipulators with multiple redundancy.
    Mechatronics, 3(1), 89-106.
  2. Alvarez D., A. J., & R., G. (2003). Online motion planning using Laplace potential fields. 2003 IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422), 3, págs. 3347- 3352.
  3. Burden RL., F. J., & AC, R. (1981). Numerical Analysis." 2nd. Ed., Prindle, Weber, and Schmidt,
    458
  4. Cai C., Y. C., & Y., L. (2007). Collision avoidance in multi-robot systems. 2007 International
    Conference on Mechatronics and Automation, (págs. 2795-2800).
  5. Connolly C., B. J., & R., W. (1990). Path planning using Laplace's equation. Proceedings., IEEE
    International Conference on Robotics and Automation, (págs. 2102-2106).
  6. Dauphin-Tanguy G., R. A., & C., S. (1999). Bond graph aided design of controlled systems.
    Simulation Practice and Theory, 7(5-6), 493-513.
  7. H., R., & F., A. (2013). A decentralized cooperative control scheme with obstacle avoidance for a team of mobile robots. IEEE Transactions on Industrial Electronics, 61(1), 347-354
  8. J., B., & Y., K. (1989). Real-time obstacle avoidance for fast mobile robots. IEEE Transactions on
    systems, Man, and Cybernetics, 19(5), 1179-1187.
  9. Karnopp, D. C., Margolis, D. L., & Rosenberg, R. C. (2000). System dynamics: modeling and simulation of mechatronic systems. Wiley.
  10. M., E., & X., H. (2001). Formation constrained multiagent control.
  11. Matoui F., B. B., & M., A. (2019). Distributed path planning of a multi-robot system based on the neighborhood artificial potential field approach. SIMULATION, 95(7), 637-657.
  12. N., L., & E., F. (2001). Virtual leaders, artificial potentials and coordinated control of groups.
    Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No. 01CH37228), 3,
    pp.. 2968-2973.
  13. O., K. (1986). Real-time obstacle avoidance for manipulators and mobile robots. En Autonomous robot vehicles (págs. 396-404). Springer
  14. Park M., J. J., & M., L. (2001). Obstacle avoidance for mobile robots using artificial potential field approach with simulated annealing. ISIE 2001. 2001 IEEE International Symposium on Industrial Electronics Proceedings (Cat. No. 01TH8570), 3, pp. 1530-1535.
  15. R., M., & J., B. (2010). String instability in classes of linear time invariant formation control with limited communication range. IEEE Transactions on Automatic Control, 55(7), 1519-1530.
  16. S., J. (2004). Virtual prototyping of bond graphs models for controller synthesis through energy and power shaping. International Conference on Integrated Modeling and Analysis in Applied
    Control and Automation (IMAACA 2004).
  17. S., K., & R., M. (2013). Stability of two-dimensional linear systems with singularities on the stability boundary using LMIs. IEEE Transactions on Automatic Control, 58(10), 2579-2590
  18. Siciliano B., S. L., & G., O. (2010). Robotics: modelling, planning and control. Springer Science
    & Business Media
  19. X., Y., & K., T. (1997). A wall-following method for escaping local minima in potential field based motion planning. 1997 8th Internation inference on Advanced Robotics. Proceedings.
    ICAR'97, (págs. 421-426).
  20. Zhang Z., Z. L., & L., W. (2016). Leader-following consensus for linear and Lipschitz nonlinear
    multiagent systems with quantized communication IEEE Transactions on Cybernetics, 47(8), 1970-1982.