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ABSTRACT 
This paper designs different laws for formation control 

and obstacle avoidance for a group of robots with 

holonomic dynamics and presents a set of simulations 

that validate and compare them. The Bond Graph 

methodology, used to design the control laws, together 

with the physical interpretation of both the obstacles 

and the interaction between the robots, allows 

addressing the problem with an energy-based 

approach. A multi agent scheme is proposed where a 

leader drives a formation of agents through a desired 

path. The formation is organized in different hierarchy 

levels and the control laws for the robots arise from 

considering the interaction among them through virtual 

dampers and springs. Two different techniques are 

addressed for collision avoidance and three scenarios 

are presented to test the different techniques for 

coordinated tracking and obstacle collision avoidance. 

Simulation results are presented to show the good 

performance of the control system. 

Keywords: formation control, obstacle avoidance, 

energy based methods, bond graphs. 

1. INTRODUCTION
In the last decades the lower prices of the robots made 

feasible the utilization of large number of robots for 

several tasks such as surveillance, search and rescue or 

data acquisition. The problem of formation and 

movement in specified geometrical shapes has been 

widely studied. 

The concept of coordinated tracking is an extension of 

the widely known problem of trajectory tracking 

(Egerstedt & Hu, 2001). That is, the objective is to find 

a coordinated control scheme for a group of robots that 

maintaining a desired scheme of formation could 

perform a desired task as a group. 

This paper tackles the problems of Formation Control 

and Vehicle Following control (A. & H., 2018) for a 

group of holonomic vehicles which are represented as 

masses in the plane.  

These problems were treated in the literature with 

multiple approaches, depending on the sensing 

capabilities of each agent and the desired topology, to 

mention: Leader Following, Predecessor-Following 

(also known as unidirectional connection), Leader- 

Predecessor follower, Predecessor-Successor (also 

known as bidirectional connection), etc. The reader 

must refer to (A. & H., 2018), (Zhang Z. & L., 2016), 

(R. & J., 2010), (S. & R., 2013) for a sound review of 

these topologies and others. 

This paper uses a hierarchical unidirectional 

interconnection structure where each agent receives 

information about the relative position and the velocity 

of some of its surrounding robots. The robot acts as if 

it were connected with a spring and a damper with the 

surrounding agents but the reaction force of this 

interconnection may not affect the other agents. 

Two interconnection structures are defined to generate 

multiple configurations. In the first one, called Scheme 

A, the agent receives information of only two 

surrounding robots, one from a superior level of 

hierarchy and the other from the same level. In the 

second scheme, called Scheme B, the robot receives 

information of four agents, two from a superior level of 

hierarchy and the others from the same level. 

The problem of obtaining the obstacle avoidance law 

inspired in a physical phenomenon have been 

addressed in (Rezaee & Abdollahi, 2013) where each 

robot is modeled as an electric charge. 

Several papers present obstacle avoidance approaches 

based on the artificial potential field concept (Khatib, 

1986) (Alvarez D. & R., 2003). In (Matoui, Boussaid, 

& Abdelkrim, 2018) an attractive and a repulsive 

potential force are proposed to pull the robot toward 

the intended goal and to repel the robot from the zone 

of the obstacles, respectively, for real time obstacle 

avoidance. However, those methods suffer from points 

of local minima at which the robots become trapped. In 

(Park, Jeon, & Lee, 2001) a potential field approach 

with simulated annealing is proposed to avoid local 

minima. (Yun & Tan, 1997) proposes a switching 

control algorithm to avoid local minima. Even if 

successful, such kind of methods includes extra 

computation and is intrinsically less satisfactory than a 

method which avoids local minima from the outset 

(Graham & Buckingham, 1993). 

The method proposed in (Connolly, Burns, & Weiss, 

1990) utilizes a potential field characterized by a 

function that satisfies Laplace’s Equation under 
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Dirichlet boundary conditions. The generated potential 

field does not contain any local minima over the 

region. The above techniques are presented mainly for 

the control of robot manipulators for both, obstacle 

avoidance and joint control in the case of redundant 

manipulators. Several other works propose potential 

fields for the coordination and obstacle avoidance of 

multi robots systems (Cai, Yang, Zhu, & Liang, 2007) 

(Leonard & Fiorelli, 2001). 

The physical approach used here for both, formation 

control and obstacle avoidance call for multi-domain 

modeling frameworks. Besides the traditional Euler-

Lagrange approach to modeling and control in robotics 

(Siciliano, Sciavicco, Villani, & Oriolo, 2010), the 

Bond Graph (BG) technique (Karnopp, Margolis, & 

Rosenberg, 2000) is increasingly gaining space as it is 

capable of representing the virtual interaction between 

the robots and the obstacles, very useful for analysis 

and simulation. The BG approach also provides 

methods to design control laws for physical systems 

(S. J. , 2004), (Dauphin-Tanguy G. & C., 1999). 

The paper is organized as follows: in Section 2 the 

problem formulation is stated. Section 3 presents the 

solution to the formation control problem. In Section 4 

two different control laws are designed to avoid 

obstacle collision of holonomic robots. In Section 5 

simulation data is provided to illustrate the main results 

presented in the above sections. Finally, Section 6 

draws some conclusions and provides future directions 

of research. 

2. PROBLEM FORMULATION
The purpose of this paper is to present and compare 

different control strategies for a group of holonomic 

robots that ensure on the one hand a coordinated 

displacement from a starting location to a desired goal 

position and, on the other, obstacle collision avoidance. 

In the following sections three strategies are presented 

addressing these problems with different approaches. A 

control law that keeps the robots in a desired formation 

is common to all the three strategies. The objective of 

this common control law is to make the robots 

converge to the formation and to follow a robot leader 

while maintaining the stability of the formation. 

2.1. First Strategy 
In this strategy a rejection force based on a spring 

principle is proposed for obstacle avoidance. The 

control of the formation movement is done through a 

trajectory tracking control law applied to the leader 

robot. 

2.2. Second Strategy 
In this case, a control law based on a potential function 

is implemented in order to both avoid obstacle 

collision and drive the formation to the final position. 

The proposed potential function, that models the 

obstacles and the goal position with high and low 

values, respectively, satisfies the Laplace’s equation in 

all the workspace. In that way, the gradient of the 

function drives the robots toward the goal while 

avoiding the obstacles. 

2.3. Third Strategy 
This strategy implements an obstacle avoidance law 

that results from modeling only the obstacles with a 

potential function. For its part, the movement of the 

formation is controlled by a trajectory tracking control 

law applied to the leader. 

3. FORMATION CONTROL
In this section the formation control problem is 

presented as a coordinated tracking problem where the 

objective is to drive a group of robots in the plane 

while keeping a specific formation.  

The formation, depicted in Figure 1, is composed by 

one leader and � agents organized in hierarchical

levels. A pyramidal topology with a mesh of identical 

triangles is shown, but this does not imply a loss of 

generality as any other form can be specified through 

the adequate choice of the length of the triangles sides. 

The directions of the arrows represent the flow 

information that the robots exchange each other. 

Thus, given a desired trajectory for the leader, the 

objective for the agents is to converge to the formation 

and to follow the leader while maintaining the stability 

of the formation and avoiding obstacle collision. 

Notice that in the stationary state, with the leader 

located in its final position, the agent’s formation may 

adapt any orientation around the leader. In this work, 

global orientation of the formation will not be 

controlled. 

Figure 1: Interconnection network of the desired 

formation. 

The control of the desired formation scheme is 

achieved through a decentralized and hierarchical 

architecture where each agent has its own control law. 

As the robots have holonomic dynamics, they may be 

treated as point masses. Thus, the dynamics of both the 

leader and the agents is simply given by ��� = �,

where � = ���		�
��denotes the position of the robot in

the plane and �		ℝ� is the control force vector

expressed in Cartesian coordinates of an inertial 

reference system. The action exerted by the controller 

on the leader is 

Leader-Level 0

Level 1

Level 2

Level 3

Higher

Hierarchy

Lower
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�� = �� + �� (1) 

where �� and �� represent the trajectory tracking

control law and the obstacle avoidance force, 

respectively. In the case of the agents the control law 

of the robot is characterized by 

�� = �� + �� (2) 

where �� and �� represent the convergence to the

formation and the obstacle avoidance force of the 

agent, respectively. 

This section deals with obtaining the feedback law ��
for the formation control of the agents. 

Each agent interacts with agents that belong to the 

same level of hierarchy and with those from the 

superior hierarchy. The proposed topology is of the 

type Predecessor-Following where the agents that 

belong to Level � receive position and velocity

information from agents of level � − 1 and are power

coupled with those from Level �.
Taking into account the above idea, two kinds of 

interaction schemes arise considering the 

interconnection network of the formation shown in 

Figure 1. In the first one (Scheme A which corresponds 

to the agents on the periphery of the formation) the 

agent interacts with two other agents, one belonging to 

the same hierarchy level and the other to the superior 

level. In the second one (Scheme B which corresponds 

to the agents in the interior of the formation) the agent 

interacts with other four agents, two belong to the same 

hierarchy level and the other two to the superior one. 

The control law for each agent comes from considering 

a virtual damper-spring connected between the agent 

and its interacting partners, as explained in the next 

sections. BG models of the formations are constructed 

ad hoc to obtain the control laws of the agents. 

3.1. Scheme A 
Consider an agent of Level � in the scheme A of

interaction. As mentioned above, the agent interacts 

with two other agents as shown in Figure 2-a. 

Figure 2: Scheme A - (a) Geometric variables (b) 

Schematic diagram. 

The schematic diagram in Figure 2-b shows the virtual 

dampers and springs connected with its two interacting 

agents. The formation control vector ��  for a

peripheral agent, the red one at level � in Figure 2 for

instance, arises from considering the virtual BG shown 

in  

Figure 3. There, sub index � = 1 indicates the agent in

level � − 1, while sub index � = 2 indicates the agent

at the same level �. Notice that a dissipation term is

added to the movement of the agents in the plane. 

Figure 3: Scheme A – Virtual BG model. 

The resulting control law is 

�� = ������
� = ��� � + �� � − !"�#����$� + ��$� − !"�#
�� (3) 

where !" is the friction coefficient assigned to the

movement of the agents in the plane, and s& and c&
stand for sin α& = +,-.+,/

0- and cos	α& = +2-.+2/
0- , 

respectively for � = 1,2. The forces with the interacting

agents are 

�4 = 54674 − 7894: + !47 #4		 (4) 

where 54  and !4 are the spring and damper coefficients

of the interaction �, respectively. The distances

between the agents are 

74 = ;6��4 − ���:� + <�
4 − �
�=�		 (5) 

And 7894 the natural length of the spring of the �>ℎ
interaction. These lengths determine the topology of 

the mesh defining the geometric layout of the 

formation. The expression for 7 #4 is
7 #4 =  @$A46�#�4 − �#��: + $��A46�#
4 − �#
�:	 (6) 

3.2. Scheme B 
Consider an agent of Level � in the scheme B of

interaction. As mentioned above, the agent interacts 

with other four agents as shown in Figure 4. 
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Figure 4: Scheme B - Geometric variables. 

The distances 74 between the agents are

74 = ;6��4 − ��B:� + <�
4 − �
B=�		 (7) 

while the forces �4 are the same as (5). The expression

of 7 #4 yields

7 #4 =  @$A46�#�4 − �#�B: + $��A46�#
4 − �#
B:	 (8) 

The schematic representation of the Scheme B is 

shown in Figure 5. 

Figure 5: Scheme B - Schematic diagram. 

In a similar way to scheme A the control vector FD of

the agent of scheme B, is obtained from the virtual BG 

depicted in Figure 6 

�� = ������
� = ��� � + �� � + �E E + �F  F −!"�#�B��$� + ��$� + �E$E + �F$F − !"�#
B� (9) 

where !" is a friction coefficient,  4 = +2-.+2G
0- , and 

$4 = +,-.+,G
0- for � = 1,⋯ ,4.

Figure 6: Scheme B - Bond Graph model. 

Notice that the agents belonging to the same 

hierarchical level are power coupled. That is, the force 

of the link that joins two agents of the same level is the 

same and is computed by and applied to both of them. 

4. OBSTACLE AVOIDANCE & NAVIGATION
In this section the avoidance of both static and dynamic 

obstacles is addressed presenting two different 

techniques. The first one considers a repulsion force 

via a spring-damper based approach. The work (J. & 

Y., 1989) proposes a repulsive force for obstacle 

avoidance. In the second one the movement of the 

agents is inspired in the flow of a river in a valley. 

Thus, the workspace is modeled with a potential 

function where high values of potential are assigned to 

the obstacles (Connolly C. & R., 1990). Both 

techniques define the obstacle avoidance force FJ
presented in (1) and (2) of the individual control laws 

of both, the leader and the agents, respectively. 

Notice that in the former technique, the information 

about the obstacle becomes known to the robot through 

sensors during run-time whereas for the latter, the 

obstacle information is supposed to be known by the 

robot entirely before. This allows for considering 

dynamic obstacles in the first technique. 

4.1. Spring-damper based approach 
First the study of the obstacle avoidance problem is 

treated by means of a virtual spring-damper technique. 

This technique consists on applying a force to the 

center of the robot to move it away from the obstacle. 

The force is inversely proportional to the distance 

between the robot and the obstacle, and can be 

interpreted as the reaction force of a virtual spring 

attached to the obstacle and the center of the robot as 

shown in Figure 7-a. The virtual damper has been 

added to avoid oscillations during the rejection of the 

robots. 
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Figure 7: (a) Schematic diagram (b) Geometric 

variables. 

The distance 79 between the robot and the obstacle can

be computed as 

79 = ;6�� − ��9:� + <�
 − �
9=�		 (10)

where ��9, �
9 represent the position of the obstacle in

the plane as depicted in Figure 7-b. The force of the 

virtual spring as a function of the distance 79 is chosen

as 

K679: = 59
79E − LM	 (11)

where 59 is the spring constant and LM a positive

constant value that allows negative excursion of the 

function K679: as shown in Figure 8-a. In this way, for

distances 79 greater than

NM = O59/LMQ (12)

the force exerted by the spring is negative. This means 

that beyond a circumference of radius NM  centered in

the obstacle the virtual spring exerts an attraction force 

to the robot. 

Figure 8: Avoidance function around the obstacle. 

Even if in principle it is expected that the force applied 

to the agent by the spring vanishes as the robot moves 

away from the obstacle, it will be seen that this 

behavior allows treating the spring as a passive 

component. In fact, considering the change of 

coordinates R = NM − 79, equation (10) leads to

K6R: = 596NM − R:E − LM	 (13)

This new function is evaluated in the first and third 

quadrant as shown in Figure 8-b. In that way, the 

addition of the term LM in the avoidance function and

the change of coordinates ensure the passivity of the 

virtual spring component. The value that is assigned to LM is low and plays a secondary role.

Remark: Notice that in an physical implementation 
the virtual spring may never work in traction since the 
sensing range of the sensors implemented in the robots 
is limited. 
Finally, reading the virtual BG shown in Figure 9, the 

implemented obstacle avoidance force vector �9 is

�9 = � @$S$��S� <K6R: + !9R#= (14) 

and, considering a static obstacle 

7#9 =  @$S�#� + $��S	�#
	 (15)

Figure 9: Virtual Spring – Bond Graph model. 

However, as in (1) the force applied to the leader 

consists on the sum of two control laws obtained 

through different methods, the leader could be affected 

by local minima, becoming trapped in a position 

different from the final desired one. In this sense, to 

avoid local minima, an artificial potential method is 

presented. 

4.2. Artificial potential 
This method proposes a model of the environment in 

which each obstacle exerts a repulsive force while the 

goal position exerts an attractive force. 

In this way a virtual potential field is generated in all 

the workspace. High and low values are assigned to the 

obstacles and goal position, respectively. As the 

generated field satisfies the Laplace’s Equation under 

Dirichlet conditions, the resulting field is continuous in 

all the workspace and does not have any local minima 

(Connolly C. & R., 1990). 

The generated potential field is a harmonic function ∅
in the domain Ω		ℝ� that satisfies the Laplace’s

equation 

∇�∅ = W�∅
W��� + W�∅

W�
� = 0 (16)

As it can be seen if the second derivatives are not zero, 

the curves of the function Y must have second

derivatives with opposite signs, in that way if not 

plane, there is always a direction where the curve 

increases or decreases. Thus, the function Y does not

have any local minima. 
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Numerical solutions for Laplace’s Equation can be 

obtained from finite difference methods (Burden RL. 

& AC, 1981). Consider � Z��4, �
4[ a discretization of the

function Y in the domain Ω. The second derivatives

can be approximated by Taylor series as 

Y+2+2<��-, �
-= = �<��4\�, �
-= − 2�<��4, �
-	= + �<��4.�, �
-=ℎ�
Y+,+,<��- , �
-= = �<��- , �
-]^= − 2�<��4 , �
-	= + �<��4 , �
-_^=ℎ�

(17)

Where ℎ is the step size to approximate the derivative.

As Y satisfies the Laplace’s Equation, � Z��4, �
4[ is

expressed by 

�<��- , �
-= = �<��4\� , �
-= + �<��4.�, �
-= + �<��- , �
-]^= + �<��4 , �
-_^=4 (18)

To obtain the values of the harmonic function Y in the

discretized points of the grid, the linear system is 

solved through iteration using the Gauss-Seidel 

method. This method consists in replacing repeatedly 

each element of the grid, using an iterative method, by 

the average of its adjacent elements. The boundary 

conditions are introduced specifying the values of the 

function � Z��4, �
4[ at the boundary of the domain WΩ
(Dirichlet boundary conditions) and remain fixed. 

The gradient of the potential function ∅ determines the

vector force �9 that keeps away the robots from the

obstacles and conducts them toward the goal. 

�9 = `∇+2∅∇+,∅a (19)

In this case the leader, and consequently the formation, 

moves toward the goal through a path determined by 

the gradient descent method. In this way, none tracking 

force is used in the control law of the leader, so that (1) 

becomes 

� = �� (20)

As can be noticed, �9 not only serves as an obstacle

avoidance force in (2), in this case also conducts the 

agents toward the goal. Thus, the driving forces of the 

agents come not only from the formation control law 

but also from the obstacle avoidance force. 

5. SIMULATION
In this section, the performance of the different 

strategies is assessed via simulations performed in the 

20 Sim environment (20-Sim, Version 4.4, 2014). 

In the simulation set � = 5 agents have been

considered and, with the leader, all are distributed in 

three hierarchical levels. 

The desired trajectory of the leader shown in Figure 10 

starts at <��, �
= = 61,1: and finishes at <�� , �
= = 69,9:.
As it can also be seen in Figure 10, the obstacle is a 

square of 61� × 1�: whose center is located at 

<��9, �
9= = 63.5,3.5:. The formation, with the robots in

their initial positions shown in Figure 10, is composed 

by the leader-Level 0 (red) and five agents distributed 

in Level 1–Level 2 (blue and green, respectively.) 

(a) (b) 
Figure 10: (a) Simulated scenario - desired path, 

obstacle and robots (b) Desired trajectory �g.

Three different strategies are tested. In the first one the 

implemented obstacle avoidance technique is the 

virtual spring-damper approach seen in Section 4.1. In 

the second one, the avoidance force is implemented 

using the technique seen in Section 4.2. Finally, in the 

third strategy only the obstacle is modeled through a 

potential field, being the avoidance force the gradient 

of the potential function. 

The trajectory tracking law of (1) is 

�� = ���g + Ki6�#g − �# : + Kj6�g − �: (21)

with kl  and km positive definite (diagonal) matrices,

and �#g  and �g  the desired velocity and position in the

plane of the leader, respectively. In the second case, 

the tracking force is zero as explained in Section 4.2. 

The mass of the robots is �4 = 1.5	[ko]. The

parameters of the formation law presented in (4) are set 

as follows: for the first level 54 = 20[q/�], !4 =9	[q$/�], for the second level 54 = 200[q/�],!4 = 20	[q$/�], and in both levels 7894 = 2	[�]. The

matrices of (21) are kl = [61, 0; 0,61], and km =[193, 0; 0,193].
5.1. Strategy 1 
The first simulation discussed is a coordinated tracking 

with obstacle avoidance strategy, implementing a 

virtual spring-damper approach as seen in Section 4.1. 

The parameters of (11) are 59 = 337	[q/�], !9 =5	[q$/�], LM = 0.1	[q] and according to (12),NM = 15[�]. In this way, as the robots are always

located closer to the obstacle than this value, the virtual 

spring never attracts them. 

In Figure 11, consecutive snapshots of the formation 

are shown. As it can be seen, the implemented 

approach keeps away the agents from the static 

obstacle. 

In this case, as it is supposed that each robot measures 

the distance to the obstacle and computes the 

avoidance force (14), it is not necessary to specify the 

position of the obstacle in advance neither predefine 

the scenario workspace. This implies that, eventually, 

dynamics obstacles could be considered. 
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Figure 11: Strategy 1 - snapshots of the formation. 

Figure 12-b depicts both, the desired and the real path 

travelled by the leader, while Figure 12-a shows the 

position error. Even if it cannot be distinguished in 

Figure 12-a, the final position error is not zero as, even 

if low, the virtual spring force is still presented when 

the leader arrives to its final position. This results in 

the agents remaining as far as possible from the 

obstacle, given to the formation the global orientation 

shown in Figure 11. 

  (a)   (b) 
Figure 12: (a) Tracking error – (b) Desired and 

travelled paths. 

As it was mentioned above, one of the advantages 

of this strategy is that dynamic obstacles can be 

considered as it is not necessary to predefine the 

scenario. In that sense, under the same control strategy, 

a new scenario simulation was proposed in order to 

demonstrate this affirmation. In this scenario the static 

obstacle is replaced by a dynamic one that crosses the 

leader in his way to the goal. In this case, 7 #9 is no

longer (15), but 

7 #9 =  @$S	6�#� − �#�9: + $��S	<�#
 − �#
9=	 (22)

As it can be seen in Figure 13 all the agents avoid the 

obstacle, with the path done by leader depicted in 

Figure 14-b. The trajectory error of the leader, Figure 

14-a, tends to zero with a permanent offset due to the 

force exerted by the virtual spring of the obstacle 

avoidance law. 

Figure 13: Strategy 1 with dynamic obstacle - 

snapshots of the formation. 

  (a)   (b) 
Figure 14: (a) Tracking error – (b) Desired and 

travelled paths. 

Although the implemented control seems to be 

successful with both static and dynamic obstacle, the 

leader, as explained above, may get stuck into local 

minima, i.e. the sum of forces in (1) may remain zero 

with the leader in a final position different from the 

desired one. To avoid this, the strategy seen in Section 

4.2 is tested. 

5.2. Strategy 2 
Next, the behavior of the six robots, each operating 

with the collision avoidance strategy seen in Section 

4.2, is tested. The graph of the potential function that 

satisfies the Laplace’s equation is shown in Figure 15-a 

where the obstacle and the goal position are 

represented with high and low potentials, respectively. 

The potential function is defined in a workspace of 

610� × 10�:. The algorithm’s flow diagram is 

presented in the Appendix. 

In this way, as is shown in the gradient trajectory map 

depicted in Figure 15-b, any trajectory initiated inside 

the workspace converges to the goal guaranteeing the 

absence of any local minima. 
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     (a)          (b) 

Figure 15: (a) Potential function – (b) Field lines. 

As mentioned above, in this case the control force �9
not only assures obstacle collision avoidance but also 

drives the leader toward the goal as shown in Figure 

16. This means that the trajectory made by the leader

depends on its initial position and �� = 0 in (1).

Furthermore, as this control law is also applied in (2), 

the agents are driven to the goal not just by its 

interactions but also by the avoidance force �9.

Figure 16: Strategy 2 - snapshots of the formation. 

In the present case a previous study of the workspace is 

necessary in order to identify the position of the 

obstacle in advance. The final position error of the 

leader is zero and the global orientation of the 

formation remains determined by the control force �9.

However, desired trajectories can no longer be 

implemented through the control law �� and the path

realized by the leader depends on its initial position. 

Figure 17: Path done by the leader. 

To overcome this inconvenient, a third strategy is 

proposed in Section 5.3, where once again a potential 

field is created but now it only models the presence of 

the obstacles. 

5.3. Strategy 3 
Finally the behavior of the six robots modeling only 

the obstacle with a potential function is tested. The 

potential function that models the obstacle is depicted 

in Figure 18-a, and the corresponding field lines are 

shown in Figure 18-b. 

In contrast to the previous case, the tracking trajectory 

law �� is given as (21). As the obstacle avoidance

force vanishes beyond an area of influence, the final 

position error of the leader is zero. 

     (a)          (b) 
Figure 18: (a) Potential function – (b) Field lines. 

In the snapshots of the simulation depicted in Figure 

19, it can be seen that even though the presence of the 

obstacle breaks the structure of the formation, the 

agents recover the desired interconnection once the 

obstacle is avoided and reach the goal with the desired 

formation. Notice that once the leader has reached the 

final position and the agents stand still, no control laws 

are applied to them and thus the formation can has any 

global orientation. 

Figure 19: Strategy 3 - snapshots of the formation. 

Figure 20-b depicts both, the desired and the real path 

made by the leader, while Figure 20-a shows the 

position error that is zero once the leader avoids the 

obstacle and reaches the final position goal. 
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  (a)   (b) 
Figure 20: (a) Tracking error – (b) Desired and 

travelled paths. 

Even if in this case a predefinition of the scenario has 

to be done and the leader may get stuck in local 

minima, unlike the other two strategies, a desired 

trajectory can be implemented and the final position 

error of the leader is zero. 

Also it will be demonstrated, through simulation 

results and considering the same strategy, how the 

value of the virtual springs and dampers of the control 

law �� of (2) affects the formation stability. Initially,

whenever the hierarchy level increased, harder springs 

and dampers were considered. Supposing now that all 

the virtual dampers and springs are equal to !4 =9	[q$/�] and 54 = 20[q/�], respectively, the

formation movement of the robots can be appreciated 

in Figure 21. As it can be seen, even if the robots avoid 

the obstacle, the formation is no longer the desired one. 

Figure 21: Strategy 3 - unstable formation - snapshots 

of the formation. 

This happens because agents from high levels of 

hierarchy are subjected to higher rotational 

acceleration causing more instability in the formation. 

Even more, as the relation between the agents from 

different levels is unidirectional, agents from high 

levels does not sense position nor velocity from the 

lowest ones, so that the control laws do not interpret 

the changes in the formation as an error. 

6. CONCLUSION
The problem of trajectory tracking and obstacle 

avoidance for a group of holonomic robots has been 

studied. The laws for formation control and obstacle 

avoidance have been obtained inspired on physical 

interpretations of the problem. Thus, the implemented 

control laws resulted in continues functions without 

commutation which implies less computation times. 

Different variables have been analyzed in the 

simulations to study the advantages and disadvantages 

of each strategy: final position error of the leader, 

presence of local minima, formation orientation, 

trajectory tracking and previous analysis of the 

scenario.  

Even if the formation was broken while it passes 

besides the obstacle, as shown in Section 5.3, the 

agents remain formed in the rest of the simulation sets 

and the control objectives have been achieved 

successfully. 

Future directions include stability analysis of the 

formation considering different kinds of 

interconnections between the robots. Moreover, in 

order to improve the overall performance of the 

system, orientation control of both, the leader and the 

agents, will be taken into account. 

ACKNOWLEDGMENTS 

The authors wish to thank SeCyT-UNR for the support 

to this research through the financing of PID-

UNR_ING502, as well as ANPCyC for the research 

project PICT 2017 No 3644. 

APPENDIX 
The following is the flow diagram of the iterative 

algorithm for the Laplace’s Equation generation 

Figure 22: Laplace’s equation generation. 

The workspace is discretized in a mesh grid of 100u100 equally spaced points. The definition of the

Dirichlet boundary conditions consist in assigning to 
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the function �<��- , �
-= of (18) a high value to the

borders of the workspace and the obstacle and a lower 

value to the goal position. This ensures that, after a 

determinate number of iterations, all the trajectories 

originated among the obstacle and the border finish in 

the goal position. Finally equation (18) and (19) are 

computed, in all the points of the workspace, to 

evaluate function Y and its gradient, respectively.
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