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ABSTRACT 
Optical scanning has proven to be advantageous to 

objectively assess the severity of chest wall deformities 

and the effectiveness of its treatment. By potentially 

eliminating the need for computed tomography (CT) 

scanning and superseding manual measurements that are 

subject to errors, a system that utilizes optical scanning 

presents great value to patients and practitioners. This 

work aims to investigate and evaluate the performance of 

two off-the-shelf optical scanning sensors in the context 

of their utility and accuracy to measure the severity of 

chest wall deformities. An in-vitro experiment and a 

human study are conducted utilizing both sensors to 

collect data and report the findings. 

 

Keywords: Chest deformities, surface scanning, Kinect 

sensor 

 

1. INTRODUCTION 
Pectus Excavatum (PE) is a chest wall deformity 

characterized by a depression of the sternum and 

accounts for nearly 90% of all congenital chest 

malformations (Williams & Crabbe, 2003). Commonly 

diagnosed in early adolescence, the severity of the 

deformation determines a patient’s candidacy for 

surgical (e.g., Nuss procedure (Nuss, Robert E. Kelly, 

Croitoru, & Katz, 1998)) or conservative nonsurgical 

treatment (e.g., Vacuum Bell (Haecker, 2011)). 

Severity, as well as treatment progress, is commonly 

determined by rudimentary techniques such as simple 

linear measurements using dowel-shaped rulers (Brigato, 

Campos, Jatene, Moreira, & Rebeis, 2008) or through 

expert evaluation of indices (Haller Index (Haller, 

Kramer, & Lietman, 1987) or Correction Index (Peter et 

al., 2011)) calculated from the patient's computerized 

tomography (CT) image. However, CT is expensive and 

results in extensive exposure to harmful ionizing 

radiation, while manual techniques can be inaccurate and 

inherently subjective. 

Recent hardware and software advancements in 3D 

imaging have led to the rise of low-cost, portable, and 

mass-market 3-dimensional scanning devices. These 

tools capture the surface geometry of objects and have 

shown great potential in recording, quantifying, and 

tracking chest wall deformity (Glinkowski et al., 2009; 

Poncet et al., 2007). 

To mitigate misdiagnoses and monitor PE treatment, we 

developed an imaging system that uses Microsoft Kinect 

Version 1 (Figure 1-a) to obtain surface scans of the 

pectus deformity and provide informative metrics of the 

target area (Kelly et al., 2018). Our technique was 

verified to measure distances from the probe accurately 

and was found to be sufficient for the application (Obeid, 

Kidane, et al., 2016; Obeid, Obermeyer, Kidane, Kelly, 

& McKenzie, 2016; Zeng et al., 2016). Nonetheless, 

scanning technology is evolving rapidly, raising the 

challenge of selecting a suitable scanning device that can 

further enhance the usability of our systems. 

This paper aims to compare two versions of Microsoft 

Kinect (V1 and V2), in the application of evaluating the 

severity and treatment of chest wall deformity. A three-

fold experiment was conducted involving four different 

types of targets to be scanned: (1) a flat white surface, (2) 

male and female mannequin torsos, (3) a 3D-printed 

pectus phantom, (4) and nineteen healthy individuals. 

The results are validated against the ground truth (GT) of 

anatomical landmark distances recorded with Vernier 

caliper and a tape measure, as well as, in the flat test 

object case, mathematical plane surface. Other 

comparative studies (F. Redaelli, Gonizzi Barsanti, 

Fraschini, Biffi, & Colombo, 2018; Pöhlmann, Harkness, 

Taylor, & Astley, 2016; Sarbolandi, Lefloch, & Kolb, 

2015) have explored the characteristics and differences 

between these devices for computer vision and 

healthcare applications (e.g., Orthopedic (Pöhlmann et 

al., 2016)), but to the best of our knowledge, no study has 

been conducted assessing the accuracy and application of 

these two sensors for pediatric chest wall deformity. 
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This paper is organized as follows: Section II will 

summarize background information on the sensors, while 

Section III will present the methods for comparison and 

data collection. Section IV will highlight experimental 

results and subsequent sensor selection for the relevant 

work. Finally, Section V will discuss conclusory remarks 

and propose potential future work. 

 

2. BACKGROUND 
The first-generation Kinect (V1) has two cameras 

colored RGB (Red, Green, Blue) and a monochrome NIR 

Near-infrared camera, as well as a NIR projector with a 

laser diode of 850 wavelengths (F. Redaelli et al., 2018). 

Depth determination is conducted based on structured 

light. The device starts by releasing infrared light onto an 

object which is then broken into a pattern by a diffraction 

grating. Patterns are sectionalized into neighborhoods 

and analyzed. Depending on the object’s distance from 

the sensor, the light becomes distorted, and a 3D 

triangulation technique is used to compute the depth of 

the object (Pöhlmann et al., 2016). However, the device 

may produce inaccurate data in the event an object with 

challenging geometry is scanned, due to the disruption 

inflicted upon the neighborhood, making it difficult to 

determine between distorted and undistorted patterns. 

The second generation of Kinect (V2) is composed of a 

512 x 414 depth image sensor, where each 10 µm x 10 

µm pixel incorporates a Time-Of-Flight (TOF) detector 

that operates using the Quantum Efficiency Modulation 

(F. Redaelli et al., 2018; Wasenmüller & Stricker, 2017). 

Depth evaluation of a Kinect V2 is determined through a 

TOF technology. The device measures the total time it 

takes for infrared light to make a round trip journey from 

the device to the object and back. The phase shift is 

analyzed by comparing the incoming signal to four 

phase-shifted control signals (Pöhlmann et al., 2016). An 

object’s reflectiveness may skew data showing higher 

depth values due to the noise presented into the depth 

measurement. 

 

  

(a) (b) 

Figure 1: Microsoft Kinect (a) V1 and (b) V2. 

 

Table 1: Comparison of Kinect sensors for surface 

scanning. 

 Kinect V1 Kinect V2 
Release 2010 2013 

Technology Struct. light Time-of-flight 

Depth image (pxls) 320 x 240 512 x 424 

FOV (degrees) 54 x 43 70 x 60 

Range (m) Up to 6 Up to 4.5 

 

 

3. METHODOLOGY 
 

3.1. Experiments 
Experiment A: The purpose of this experiment is to 

determine the spatial uncertainty for different operating 

distances. Each depth sample collected by the sensor is 

comprised of (1) actual measured values, (2) unavoidable 

random error due to environmental conditions such as 

thermal or electronic noise, and (3) a systematic error due 

to device miscalibration or incorrect use (Guidi, Gonizzi 

Barsanti, & Micoli, 2016). The precision of the sensor is 

limited by the random error, which can only be 

statistically modeled and noted as the device’s intrinsic 

limitation. The accuracy, on the other hand, is influenced 

by the systematic error, which is difficult to detect but 

can be minimized with proper calibration. The 

combinations of these two errors represent global spatial 

uncertainty.  

Following a similar approach used by (F. Redaelli et al., 

2018; Guidi et al., 2016), global spatial uncertainty for 

the two sensors in this study was evaluated by scanning 

a flat test object (Figure 2-a) and measuring the deviation 

of the scanned reference surface from an ideal plane. For 

each flat surface scan, acquired at four different 

operating distances, we estimated the deviation of the 

observed 3D surface against a best-fitting mathematical 

plane model. Additionally, a low-pass filter was used to 

remove the high-frequency random error component and 

highlight systematic distortion. 

 

Experiment B: In this experiment, we evaluated the 

dimensional accuracy of the sensors by comparing 

known landmark distances of selected rigid physical 

objects against their virtual counterparts (3D models 

collected by scanning the objects with the two sensors). 

For this purpose, we used plastic mannequins and a 

3D printed PE replica with fiducial markups (Figure 2b-

d). The geometric details on the mannequins mimic the 

human body, albeit in a rigid way; whereas the 3D-

printed PE replicated the anticipated patient 

morphology. Fiducial markers were placed on the belly 

button/navel (N), sternal notch (S), nipples (Rp & Lp), 

center chest line, and upper chest area. However, for 

ground truth, only the "sternal notch to navel" (S-N) and 

"right nipple to left nipple" (Rp-Lp) linear (Euclidean) 

distance were recorded using a Vernier caliper. The same 

distances were digitally measured on the acquired 

3D surface using a virtual ruler (Figure 6). 

 

Experiment C: The final experiment investigated the 

accuracy of the two sensors to capture dimensions on 

human subjects. In a clinical setting, landmarks show 

relative displacements due to the patient’s change in 

posture and skin or soft tissue movement due to 

breathing. In a fashion similar to the test conducted in 

experiment B, a trained nurse placed fiducial markers 

on the navel, sternal notch, and nipples. For ground truth, 

"sternal notch to navel" (S-N) and nipple (Rp-Lp) 

distances were measured manually on the subjects. 

However, in this case, surface distance instead of linear 
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distance was recorded using a flexible tape measure. The 

mean deviation between the digital (Figure 8) and hand-

measured values of the distances quantifies the 

dimensional accuracy used to compare the two sensors. 

 

3.2. Test Objects  
The study involved four different test objects. Similar to 

(F. Redaelli et al., 2018; Guidi et al., 2016), a float glass 

was selected as a flat reference surface due to the smooth 

and close approximation of a theoretical plane. The glass 

(Figure 2-a) had a dimension of 58 cm x 48 cm and a 

thickness of 0.05 cm. It was painted matte white to be 

sensed by the devices, and four markers were placed to 

create a region of interest. 

In addition to the object described above, three other 

objects emulating human chest profile were used to 

evaluate dimensional accuracy. The first two consisted of 

male and female plastic mannequins with fiducial 

markups (Figures 2-b and 2-c). The third object was a 

physical replica of real PE patient obtained by scanning 

a patient before undergoing the Nuss procedure surgery 

and 3D-printing the model (Figure 2-d). The PE phantom 

had dimensions of 27 x 21 cm with the deepest point of 

deformity at 25 mm. 

 

 
(a) 

  

(b) (c) 

 
(d) 

Figure 2: Objects used for experiment: (a) glass, (b) male 

mannequin, and (c) female mannequin, and (d) 3D-

printed pectus chest. 

3.3. Subjects 
Nineteen healthy individuals (all males, age: 11 ± 2 

years, height: 155. ± 14.7 in.) with no chest deformity 

participated in this study. The Eastern Virginia Medical 

School ethics committee approved the study (EVMS 

IRB# 14-10-EX-0214), and all subjects signed consent 

forms before data collection (Figure 3-b). 

 

3.4. Data Acquisition 
3D surfaces were acquired using ReconstructMe (Heindl 

& Kopf., 2012) for Kinect V1, and Microsoft Kinect 

Fusion SDK (Microsoft, 2014) for Kinect V2. For 

ReconstructMe, the volume bounding box was fixed to 1 

x 1 x 1 m at an offset of 0.1 m – 0.50 m from the camera. 

Similarly, for Fusion SDK, volume voxels per meter 

were set to 768 with the voxel resolution of 512 x 512 x 

512. The depth threshold was fixed at 0.5 m in front of 

the camera with a bounding box size varying from 1.00 

m ~ 2.0 m in order to fully capture the torso.  

Scans were collected utilizing a supine test subject/object 

position/posture. The sensors were fixed on a curved 

platform which was mounted on a movable overhead 

frame, as shown in Figure 3, allowing for stable arc 

motion.  

The test objects were scanned at four different distances 

from the sensors: 0.7 m, 0.8 m, 0.9 m, and 1.0 m. It is 

important to note that the objects were placed on the table 

with the sensor height adjustment occurring by sliding 

the overhead platform with increments of 0.1 m (Figure 

3-a). All four items were scanned using the two sensors 

individually before moving to scan at the next height. 

Both snapshot (sensor is stationary) and continuous 

(moving the sensor on the curved frame) scanning 

approaches were used to capture full sides of the figure. 

The data acquisition was stopped after 5 seconds for 

snapshot and 30 seconds for continuous scanning.  

Unlike the test objects, the human subjects were scanned 

with the sensor mounted at a distance of 0.9 m from the 

subject. The camera was rotating 130° around the subject 

to capture the front and sides of the torso. Both Kinect 

V1 and V2 were running simultaneously for comparison 

(Figure 3-b). 

 

3.5. Data Processing 
After the scanning procedure, raw 3D data was saved as 

a colored polygon (.ply format) mesh file. All further 

processing steps are done on the opensource MeshLab 

(Cignoni et al., 2008), and GOM inspect (GOM, 2013) 

software applications. The mesh data is used as provided 

by the sensors with minor pre-processing such as 

removal of artifact points or undesired background 

objects. For Kinect V2, the 3D model was scaled by a 

factor 1000 to convert to millimeter units. 

The flat glass surface was cropped into 20 x 20 cm area, 

and the Taubin filter (λ = 0.95, μ = -0.98 with 50 

iterations) was also utilized in MeshLab to remove high-

frequency components from the global error and 

highlight systematic error (Taubin, 1995). 
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(a) 

 

(b) 

Figure 3: the scanning procedure: (a) scanning a 

mannequin and (b) scanning a healthy subject. 

 

4. RESULTS AND DISCUSSION 
 

4.1. Experiment A 
Spatial uncertainty is reported as the standard deviation 

(SD) of the 3D surface from the fitted mathematical 

plane model. Table 2 and Figure 4 illustrate the global 

uncertainty/error (𝜎𝑢) for both sensors. Similar to (F. 

Redaelli et al., 2018; Guidi et al., 2016) systematic error 

(𝜎𝑠) is deduced by applying Taubin filter. Lower values 

indicate better device performance. The first-generation 

Kinect (V1) had a higher global error (SD ≤ 1.5 mm) for 

the tested sensor range. The error did not exceed 0.5 mm 

for Kinect V2, and it remained stable over the operating 

distances. Trends were within the expected interval and 

consistent with other comparative studies (F. Redaelli et 

al., 2018; Guidi et al., 2016; Pöhlmann et al., 2016). 

 

Table 2: SD of the point-to-plane distance for the float 

glass test object at different sensor distance 

Device 

Global (𝝈𝒖) and Systematic (𝝈𝒔) Errors [mm] 
0.7 m 0.8 m 0.9 m 1.0 m 

𝜎𝑢 𝜎𝑠 𝜎𝑢 𝜎𝑠 𝜎𝑢 𝜎𝑠 𝜎𝑢 𝜎𝑠 

V1 1.10 1.07 1.25 1.21 1.45 1.39 1.48 1.44 

V2 0.41 0.41 0.44 0.39 0.39 0.34 0.34 0.31 

 
Figure 4: Standard deviation of measurement error to 

fitted plane at different sensor distances. 

 

Compared to Redaelli et.al (F. Redaelli et al., 2018), we 

observe lower error values for both sensors, which may 

be explained by the different methods used to fit the ideal 

plane; we used a best-fit method while they used Iterative 

Closest Point (ICP). Figure 5 shows the point to plane 

deviation at sensor distance 0.8 m. For Kinect V1, 

approximately 45% of the observed deviation was below 

1.0 mm, and 0.82% were within 2 mm. For Kinect V2, 

80% of observed deviation was below 0.5 mm and 97% 

was under 1.0 mm. This result is similar to one reported 

by (Pöhlmann et al., 2016). 

 

 
Kinect V1 

 
Kinect V2 

 
Figure 5: Color-mapped point-to-plane deviation of the 

3D cloud from the fitted ideal plane for data collected 

with both sensors at 0.8 m operating distance. 

 

4.2. Experiment B 
As previously mentioned, the ground truth is the 

caliper/tape manual measurement. Therefore, a deviation 

from that measurement was computed for all scanned 

objects. Figure 6 shows an example of a virtual 

measurement obtained for the male mannequin object. 

Figure 7 shows the dimensional accuracy plot for all 3 

objects, for both S-N and Rp-Lp distances, and for both 

sensors; it presents the millimeter difference box plot. 

Kinect V2 showed better results for both Rp-Lp (right 

nipple to left nipple) and S-N (sternal notch to navel) 

distances than V1. A one-sample t-test was conducted to 

determine whether the virtual measurements were 

different from the ground truth, comparing the mean 

error score to zero. All virtual measurements passed 
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Shapiro-Wilk's normality test (p > 0.05). The S-N 

distance deviation of the female mannequin (1.5, 95% 

CI, -3.19 to 6.18) and PE phantom (-1.38, 95% CI, -3.6 

to 0.89) was not significantly different from zero. The 

Rp-Lp distance deviation for the male mannequin (0.75, 

95% CI, -.049 to 1.98) and PE phantom (-0.87, 95% CI, 

-2.19 to 0.35) was also found to be not statistically 

significant. However, on Kinect V1, only mean deviation 

from the female mannequin was found to be not 

significant (S-N = 1.5, 95% CI, -3.19 to 6.18 and Rp-Lp 

= -1.38, 95% CI, -3.6 to 0.89); whereas all other 

measured values were found to be significantly larger or 

smaller (p < 0.05) than measured ground truth. 

 

 
Figure 6: Illustration of obtaining virtual measurements 

(in this case for object: male mannequin). 

 

 
Figure 7: Test object millimeter difference error box plot. 

 

4.3. Experiment C 
The purpose of the final experiment was to validate the 

sensors in a clinical setting. We evaluate the hypothesis 

that distances measured from Kinect V1 and Kinect V2 

data are equivalent to the real measurements obtained 

from a human participant’s chest surface using a tape 

measure. Figure 8 shows an example of a virtual 

measurement for one of the participants. 

 
Figure 8: Illustration of obtaining virtual measurements 

for a real healthy subject. 

 

The equivalency analysis assesses whether mean 

variations are small enough to be deemed acceptable. 

The discrepancy (∆) values for Rp-Lp and S-N were 

selected to be 1.4 cm and 4.5 cm, respectively. We derive 

these values from the average anthropometric diameter 

of the nipple and navel (Kawale et al., 2013; Tanini & Lo 

Russo, 2018). 

The nipple diameter (areola) for males ranges from 0.5 - 

1.0 cm, with a mean value of 0.7 cm (Tanini & Lo Russo, 

2018). Therefore, ∆ = 1.4 is acceptable as it is equivalent 

to 2x an average nipple diameter, representing negligible 

variation when using different measurement techniques 

(e.g., inside or outside the nipple-nipple distance). 

Similarly, the average navel diameter varies from 1.5 to 

2.5 cm, the average sternal notch width is 5 cm, and the 

average sternal notch to navel distance is 40-45 cm 

(Kawale et al., 2013). Therefore, we choose ∆ to be 4.5 

cm, which is 10% S-N distance. Figure 9 shows the 90% 

confidence interval and the zone of indifference.  

Digitally measured Rp-Lp distances showed acceptable 

agreement with the manual measurements. Both sensors 

were found to be equivalent, with the 90% CI falling 

inside the indifference zone. It should be noted that for a 

two-sided t-test, only actual-vs.-Kinect V2 outcome 

(6.21, 95% CI, -0.02 to 12.61) was not statistically 

different from zero (p = 0.58). However, for S-N 

measurement, all actual-vs.-Kinect groups were 

statistically different from zero and not equivalent.  

 

4.4. Discussion 
Spatial uncertainty was evaluated by scanning a flat test 

object at a range of 0.7 m - 1.0 m and measuring 

deviation to a fitted mathematical plane model. This 

range is suitable for clinical PE chest scanning 

application. Our results showed lower global uncertainty 

for Kinect V2 with 97% of deviation below 1 mm; the 

error remained stable for the operating distances. The 

device performance obtained from the simple flat surface 

is only a preliminary indication of the sensor’s 

performance and may vary in a real clinical setting. 
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When evaluating linear dimensional accuracy using rigid 

objects, Kinect V2 outperformed V1, but both devices 

exhibited errors for the larger linear distance (S-N). 

Dimensional accuracy was also assessed in a clinical 

setting. Although both sensors showed acceptable 

agreement with manual measurements for the Rp-Lp 

distance, Kinect V2, in particular, showed an error not 

statistically different from zero (p = 0.058). However, all 

digital measurements performed worse for S-N distance 

in human subjects. A plausible explanation for the 

relatively large error maybe the size of the anatomical 

landmarks. Higher variability is expected when manually 

annotating large anatomical landmarks such as the 

sternal notch as it allows more room for inconsistency 

and human error. Furthermore, the digitally defined 

surface path between the two points may be different 

from the manual measurement. 

 

 

(a) 

 

(b) 

Figure 9: 90% confidence interval and zone of 

indifference for (a) Rp-Lp means and (b) S-N means. 

 

5. CONCLUSION 
Recent advancements in imaging have led to the rise of 

low-cost 3-dimensional scanning devices. While the 

technology is evolving rapidly, a challenge of selecting a 

suitable device for medical applications rises. 

This paper compares two generations of Microsoft 

Kinect (V1 &V2) scanning sensors that use two different 

technologies (structure light and time-of-flight) in the 

context of assessing chest wall deformities. This was 

done by conducting a 3-fold experiment to investigate the 

spatial uncertainty as well as the linear dimensional 

accuracy of the two devices. Kinect V2 showed a level 

of accuracy that exceeded that of V1 and allows the 

capturing of small anatomical features in a clinical 

setting. For assessing chest wall deformities such as 

pectus excavatum, this study shows that V2 can provide 

a more reliable evaluation of the condition (than V1) and 

can better inform on treatment progress. 
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