Towards an adaptive decision-support system for Type I Diabetes treatment based on simulation and machine learning

  • Iván Castilla-Rodríguez  , 
  • Rafael Arnay  , 
  • José M. González-Caval  , 
  • Juan A. Méndez  , 
  • Amado Rivero-Santana  , 
  • Lidia García-Pérez  
  • a,b,c,dDepartamento de Ingeniería Informática y de Sistemas, Universidad de La Laguna, Spain
  • a,e,f Research Network on Health Services for Chronic Conditions (REDISSEC) Carlos III Health Institute, Madrid, Spain
  • e,f Fundación Canaria de Investigación Sanitaria (FUNCANIS), Tenerife, Spain
Cite as
Castilla-Rodríguez I., Arnay R., González-Cava J. M., Méndez J. A., Rivero-Santana A., García-Pérez L. (2019). Towards an adaptive decision-support system for Type I Diabetes treatment based on simulation and machine learning. Proceedings of the 8th International Workshop on Innovative Simulation for Healthcare (IWISH 2019), pp. 15-21. DOI: https://doi.org/10.46354/i3m.2019.iwish.003

Abstract

Diabetes is one of the most prevalent chronic diseases in the world, especially in middle- and low-income countries. Inter- and intra-patient variability greatly hinders the establishment of effective treatments by clinicians, even among those most experienced. This variability also prevents health administrations to establish adequate controls that guarantee the application of the most cost-effective interventions. In this work, we propose a decision support system that uses simulation and machine learning as tools to provide the clinician with information adapted to the patient on the best intervention for a patient in terms of effectiveness and cost-effectiveness.

References

  1. Briggs A.H., Claxton K., Sculpher M.J., 2006. Decision Modelling for Health Economic Evaluation. New York: Oxford University Press.
  2. Caballero-Ruiz E., García-Sáez G., Rigla M., Villaplana M., Pons B., Hernando M.E., 2017. A web-based clinical decision support system for gestational diabetes: Automatic diet prescription and detection of insulin needs. Int. J. Med. Inform. 102:35–49.
  3. Carson E.R., Carey S., Harvey F.E., Sonksen P.H., Till S., Williams C.D., 1990. Information technology and computer-based decision support in diabetic management. Comput. Methods Programs Biomed. 32:179–188.
  4. Castilla I., García F.C., Aguilar R.M., 2009. Exploiting concurrency in the implementation of a discrete event simulator. Simul. Model. Pract. Theory. 17:850–870.
  5. Chen R.-C., Jiang H.Q., Huang C.-Y., Bau C.-T., 2017. Clinical Decision Support System for Diabetes Based on Ontology Reasoning and TOPSIS Analysis. J. Healthc. Eng. 2017:1–14.
  6. Contreras I., Vehi J., 2018. Artificial Intelligence for Diabetes Management and Decision Support: Literature Review. J. Med. Internet Res. 20:e10775.
  7. Deutsch T., Carson E.R., Harvey F.E., Lehmann E.D., Sonksen P.H., Tamas G., Whitney G., Williams
    C.D., 1990. Computer-assisted diabetic management: a complex approach. Comput.
    Methods Programs Biomed. 32:195–214.
  8. Fico G., Arredondo M.T., Protopappas V., Georgia E., Fotiadis D., 2015. Mining Data When Technology Is Applied to Support Patients and Professional onì the Control of Chronic Diseases: The Experience of the METABO Platform for Diabetes Management.
    In: Fernández-Llatas C., García-Gómez J., eds Data Mining in Clinical Medicine. Methods in
    Molecular Biology (Methods and Protocols). New York:Humana Press, NY. 1246:191–216.
  9. Health Quality Ontario, 2018. Continuous Monitoring of Glucose for Type 1 Diabetes: A Health Technology Assessment. Ont. Health Technol. Assess. Ser. 18:1–160.
  10. International Diabetes Federation, 2017. IDF Diabetes Atlas. Available from:
    http://diabetesatlas.org/IDF_Diabetes_Atlas_8e_in teractive_EN/ [Accessed 21/03/2019].
  11. Kang S., 2018. Personalized prediction of drug efficacy for diabetes treatment via patient-level sequential modeling with neural networks. Artif. Intell. Med. 85:1–6.
  12. Kavakiotis I., Tsave O., Salifoglou A., Maglaveras N., Vlahavas I., Chouvarda I., 2017. Machine Learning and Data Mining Methods in Diabetes Research. Comput. Struct. Biotechnol. J. 15:104–116
  13. Palmer A.J., Roze S., Valentine W.J., Minshall M.E., Foos V., Lurati F.M., Lammert M., Spinas G.A.,
    2004. The CORE Diabetes Model: Projecting Long-term Clinical Outcomes, Costs and Costeffectiveness of Interventions in Diabetes Mellitus (Types 1 and 2) to Support Clinical and
    Reimbursement Decision-making. Curr. Med. Res. Opin. 20:S5–S26.
  14. Palmer A.J., Roze S., Valentine W.J., Minshall M.E., Foos V., Lurati F.M., Lammert M., Spinas G.A.,
    2004. Validation of the CORE Diabetes Model Against Epidemiological and Clinical Studies.
    Curr. Med. Res. Opin. 20:S27–S40.
  15. Power2DM website, 2019. Available from: http://power2dm.eu/ [Accessed 21/03/2019].
  16. Salzsieder E., Vogt L., Kohnert K.-D., Heinke P., Augstein P., 2011. Model-based Decision support in Diabetes Care. Comput. Methods Programs Biomed. 102:206–218.
  17. Sherimon P.C., Krishnan R., Sherimon B.P.C., In R.C., 2016. OntoDiabetic: An Ontology-Based Clinical Decision Support System for Diabetic Patients.
    Arab J Sci Eng 41:1145–116
  18. Thokala P., Kruger J., Brennan A., Basarir H., Duenas., Pandor A., Gillett M., Elliot J., Heller S., 2013. The Sheffield Type 1 Diabetes Policy Model (No. 13/05. In: Health Economics and Decision Science (HEDS) Discussion Paper. Sheffield, UK.
  19. Valentine W.J., Pollock R.F., Saunders R., Bae J., Norrbacka K., Boye K., 2017. The Prime Diabetes
    Model: Novel Methods for Estimating Long-Term Clinical and Cost Outcomes in Type 1 Diabetes Mellitus. Value Heal. 20:985–991.
  20. Zahlmann G., Franczykova M., Henning G., Strube M., Hüttl I., Hummel I., Bruns W., 1990. DIABETEX - a decision support system for therapy of type I diabetic patients. Comput. Methods Programs Biomed. 32:297–301
  21. Zhou H., Isaman D.J.M., Messinger S., Brown, M.B., Klein R., Brandle M., Herman W.H., 2005. A
    computer simulation model of diabetes progression, quality of life, and cost. Diabetes Care 28:2856–63.