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ABSTRACT 

Diabetes is one of the most prevalent chronic diseases in 
the world, especially in middle- and low-income 
countries. Inter- and intra-patient variability greatly 
hinders the establishment of effective treatments by 
clinicians, even among those most experienced. This 
variability also prevents health administrations to 
establish adequate controls that guarantee the application 
of the most cost-effective interventions. In this work, we 
propose a decision support system that uses simulation 
and machine learning as tools to provide the clinician 
with information adapted to the patient on the best 
intervention for a patient in terms of effectiveness and 
cost-effectiveness. 
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1. INTRODUCTION 

Diabetes mellitus is a chronic disease that can be caused 
by a malfunction of the pancreas, which does not produce 
enough insulin (the hormone that regulates blood 
glucose), or the body, which is not able to use the insulin 
produced. In the long term, hyperglycemia affects the 
organs of the body, which leads to develop all kinds of 
chronic complications (cardiovascular and eye diseases, 
nephropathy, neuropathy...) with extremely negative 
effects on the patient's health and with an enormous 
economic impact in health systems. 
Approximately 425 million adults have diabetes 
worldwide, and this figure is expected to increase to 629 
million by 2045, with a special incidence in low- and 
middle-income countries (International Diabetes 
Federation, 2017). The precise diagnosis of diabetes is 
quite complex, although three main types are currently 
accepted: type 1 (T1DM), type 2 (T2DM) and 
gestational. 
More specifically, T1DM is an autoimmune disease, 
which results in the body producing little or no insulin. 

Although its cause is not fully understood, it is known to 
be associated with genetic factors and certain 
environmental triggers. Typically, T1DM develops in 
childhood or adolescence. In high-income countries, 
T1DM is estimated to be between 7% and 12% of all 
cases of diabetes. 
The adequate management of the disease relies on a 
constant and frequent monitoring of the blood glucose 
level, as well as other risk factors; accompanied by a 
treatment with adequate doses of insulin, and diet and 
healthy habits. In this way, it is possible to delay or avoid 
most of the worst consequences of the T1DM. 
Despite the existence of clinical practice guidelines and 
the increasing training of health professionals, great 
uncertainty surrounds the potential effectiveness of a 
treatment in a particular patient. Hence, it is still 
necessary to have systems that improve the decision 
making of the clinicians. Furthermore, in this decision-
making process, not only the effectiveness of the 
interventions should prevail. In the current context in 
which we live, the sustainability of public health systems 
is in question, so the cost of interventions should also be 
considered when recommending a treatment. Cost-
effectiveness analysis is a type of economic evaluation 
that allows assessing both the cost and the effectiveness 
of a new health intervention. This type of evaluations is 
increasingly used in contexts where the availability of 
resources is limited, and respond to the need to have tools 
that objectively value the benefits for the population of a 
health technology against its cost (Briggs, Claxton, and 
Sculpher 2006). Specifically, in Spain, Royal Decree-law 
16/2012, of 20 April, determines that the economic 
evaluation of health interventions is a necessary 
instrument to decide whether the National Health System 
should finance a new drug, therapy or health technology. 
The rest of this paper is organized as follows. Section 2 
presents a review of the state-of-the-art in terms of 
decision support systems for the treatment of diabetes. 
Section 3 highlight the main modelling frameworks 
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available for the economic assessment of new 
interventions for diabetes. Section 4 proposes a new 
approach that intends to incorporate economic factors 
into decision-making, and advance in the adaptation to 
the patient of the simulations by means of machine 
learning techniques. Within this section, special 
emphasis is made on the simulation model. Finally, 
Section 5 draws some conclusions and further research. 
 
2. CLINICAL DECISION SUPPORT SYSTEMS 

FOR DIABETES TREATMENT 

The creation of computerized clinical decision support 
systems (CDSS) in diabetes is not recent. Salzsieder et 
al. (1988) proposed a CDSS to predict the effect of 
different treatment regimens in patients with T1DM. The 
system was based on a simulation model that predicted 
the patient's metabolic evolution based on the glucose-
insulin ratio. 
In the 90s, a number of CDSSs based on rule-driven 
expert knowledge systems appeared. For example, 
DIABETEX was a CDSS for patients with T1DM 
focused on helping non-expert clinicians. The system 
was manually fed with follow-up data from patients. 
With this information, DIABETEX calculated the best 
insulin dose for the patient (Zahlmann et al. 1990). 
Carson et al. (1990) and Deutsch et al. (1990) present 
similar proposals. 
Much more recently, Salzsieder et al. (2011) developed 
KADIS, a patient-centered and model-based CDSS to 
provide clinicians with evidence-based 
recommendations. KADIS uses a model of the 
physiological system of glucoregulation, which can be 
adapted to individualized patient profiles. This model 
provides a reference to analyze the impact of different 
therapies on the individual and recommends insulin 
guidelines. Currently, KADIS is part of an European 
project, called Power2DM. 
METABO is another project that monitors the 
pharmacological and lifestyle factors that may affect the 
blood glucose levels of a patient. This monitoring leads 
to structured information that helps patients and 
caregivers to make decisions. The core of METABO is a 
compartmental model that provides immediate 
information to patients about how their lifestyle or 
treatment affects their glucose level. Clinicians benefit 
from the information gathered by METABO thanks to 1) 
the identification of rules that relate lifestyles, treatments 
and metabolic data; 2) the creation of groups 
("clustering") of patients based on criteria hidden in the 
data, using machine learning tools; and 3) the 
classification of new patients in the identified groups 
based on their characteristics (Fico et al. 2015). 
METABO is a clear example of the current trend, where 
the use of machine learning techniques stands out among 
other strategies. Contreras and Vehi (2018) and 
Kavakiotis et al. (2017) present revisions on these last 
approaches, of which we highlight some in the following 
paragraphs. 
OntoDiabetic is a CDSS based on a series of ontologies, 
extended by rules to model clinical practice guidelines. 

These ontologies allow evaluating the patient’s risk 
factors and providing treatment suggestions. This 
approach does not include any type of patient simulation 
(Sherimon et al. 2016). 
The approach of Chen et al. (2017) is a CDSS for 
clinicians that uses multicriteria decision-making 
techniques for prioritizing among treatments for T2DM. 
Their approach also applies a fuzzy logic model to take 
into account patient's disposition in the decision-making 
process. 
Caballero-Ruiz et al. (2017) present a web platform that 
has a CDSS for patients in relation to their diet and 
insulin dose. A clinician should always review the insulin 
dose before approval. A rule-based knowledge system, 
which combines the output of two finite automata to 
determine the patient's metabolic status, generates the 
recommendations. 
Kang (2018) proposes a system for predicting the 
effectiveness of treatments for patients with T2DM based 
on recurrent neural networks. Neural networks 
incorporate information about the sequence of treatments 
prior to the inference process, which, according to the 
author, improves the accuracy of the prediction. 
 
3. ECONOMIC MODELS FOR HEALTH 

INTERVENTIONS ON DIABETES  

None of the aforementioned proposals incorporates 
elements to assess not only the effectiveness, but the cost 
of health interventions. In diabetes, the economic 
evaluation of new treatments is usually carried out with 
the support of models that reflect the evolution of the 
disease throughout the patient's life, so that the impact on 
both the long-term health of the patient, and the use of 
health resources can be quantified. Many of these models 
are created ad hoc to evaluate a specific intervention in a 
specific context but the complexity of this disease has led 
to the creation of some large commercially available 
generic models. 
The Core Diabetes Model (CDM) of IQVIA is probably 
the most widely used of these models (Palmer et al. 
2004a). The CDM is able to simulate the progression of 
T1DM and T2DM from the levels of glycosylated 
hemoglobin (HbA1c), blood pressure, lipids, weight and 
hypoglycemia. With these characteristics, it can predict 
life expectancy, quality-adjusted life expectancy, time to 
presentation of complications, and costs. CDM has been 
widely validated and is in continuous development 
(Palmer et al. 2004b). 
The Prime Diabetes Model (PDM) is a similar alternative 
to CDM, and it is also widely validated (Valentine et al. 
2017). 
Both the CDM and the PDM are commercial models. 
Other models developed from the academic environment 
are the Michigan model for diabetes (Zhou et al. 2005), 
and the model for T1DM at the University of Sheffield 
(Thokala et al.2013). 
All these models focus on the evaluation of new 
technologies, but its use as a framework for the decision 
making of the clinician with the existing treatments has 
not been considered until now. 
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4. A NEW APPROACH FOR SUPPORTING THE 

DECISIONS OF CLINICIANS ON DIABETES 

TREATMENT  

Figure 1 shows a schematic diagram of a new CDSS 
based on simulation and machine learning techniques, 
which has three main components: 
 

● The simulation model core 
● The parameter adaptation system 
● The CDSS interface 
 
4.1. Simulation model core 

Currently, the simulation model core is a highly modular 
discrete event simulation (DES) model that characterizes 
the progression of T1DM for a patient for a lifetime 
horizon. We selected this kind of model above other 
alternatives (Markov models, decision trees…) to allow 
the inclusion of individual characteristics to model the 
progression of the disease, to faithfully represent non-
linearity of hazard ratios with patient characteristics, to 
easily include acute complications, and to avoid the 
explosion of states due to the multiple comorbidities that 
patients concurrently suffer. The model is implemented 
by using a Java-based DES library that incorporated all 
the tools for managing events and obtaining results 
(Castilla, García, and Aguilar 2009).  
The developed model comprises, as well as other 
previously published studies, four groups of chronic 
complications of T1DM: cardiovascular disease, 
nephropathy, neuropathy and retinopathy (Health 

Quality Ontario 2018; Thokala et al. 2013). In addition, 
it incorporates episodes of severe hypoglycemia. The 
risk of progression of these complications depends, 
fundamentally, on the HbA1c level of each individual, 
though age or duration of diabetes may serve as 
predictors too. As shown in Figure 2, the model starts by 
assigning some characteristics to the individuals, such as 
age, HbA1c level and intervention group. HbA1c, 
together with the other initial characteristics, serve as a 
predictor of the time it will take the individual to develop 
each of the complications. 
The onset of a chronic complication is handled as an 
event that modifies the patient's condition. These 
modifications can lead to increasing the risk of other 
complications, which, in turn, may shorten the time of 
the complication onset. Similarly, the risk of patient 
mortality increases with many of these complications, 
which may reduce their life expectancy. The 
manifestation of each chronic complication can be 
accompanied by a cost for the acute treatment of the 
problem, and then contribute to the annual burden of the 
disease with a fixed treatment and follow-up cost per 
year. 
The model contemplates only the first event for 
cardiovascular disease, be it an angina, a stroke, a heart 
failure or a myocardial infarction. 
Nephropathy involves three phases: an initial phase of 
microalbuminuria, i.e., with very mild or nonexistent 
clinical manifestations; a phase of macroalbuminuria, 
where the manifestations are moderate; and a final phase 
that is expressed as end-stage renal disease.  

 

 

Figure 1: Simplified schema of the solution 
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Figure 2: Structure of the model 

 
 

Neuropathy considers two possibilities of evolution: a 
mild or moderate neuropathy, and the amputation of a 
lower limb as the most severe consequence, which, in 
turn, would lead to a marked decrease in quality of life. 
For retinopathy, the model recognizes two stages of 
progression (non-proliferative and proliferative). At the 
same time, the patient can develop a diabetic macular 
edema. From any of these states the patient could lose 
sight completely. 

The model handles episodes of severe hypoglycemia 
slightly differently. When suffering from severe 
hypoglycemia, patients suffers a decrease in their quality 
of life and have an associated probability of dying from 
the episode. 
The parameters of the model are based on different 
sources. The time to develop complications is adapted 
from annual transition probabilities published in a 
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number of former economic evaluations (Health Quality 
Ontario 2018; Thokala et al. 2013). 
We performed several validation tasks to increase the 
confidence in the results of the model. These tasks 
included the comparison with the accumulated incidence 
of background retinopathy, microalbuminuria and 
neuropathy at 9 years described in the Diabetes Control 
and Complications Trial (DCCT), as posed by The 
Mount Hood Challenge 4 Modeling Group (2007); and 
the parameterization of the model to reproduce the model 
from Health Quality Ontario (2018). 
With respect to the validation with the DCCT results, we 
must consider the results on microalbuminuria and 
neuropathy as an internal validation of the model, since 
the probabilities used in the model were adapted from 
this study. Conversely, the comparison with the results 
for retinopathy is an external validation. 
Table 1 shows the results of the validation against DCCT. 
The internal validity of the model is satisfactory, 
especially for the progression of the population in 
intensive treatment, which presents very low errors. For 
conventional treatment and the same complications, the 
relative error is higher, although always lower than 3 
percentage points. 
As regards background retinopathy, the absolute error in 
the intensive intervention is less than 5 percentage points. 
However, the discrepancy with the results of the 
conventional intervention is remarkable. This 
discrepancy could have its origin in differences due to 
other clinical factors between the Wisconsin 
Epidemiologic Study of Diabetic Retinopathy (WESDR) 
population (used as a source for our model) and the 
DCCT population. It could also be partly explained by 
the way HbA1c reduction is applied to the population 
with intensive intervention: the behavior of the incidence 
of retinopathy with respect to the level of HbA1c is not 

linear, so the accumulated incidences are highly 
influenced not only by the average value of HbA1c but 
because of its dispersion. From the DCCT study, it was 
possible to obtain that the reduction of HbA1c was 1.5% 
on average, with a standard deviation of 1.1. However, 
there was not enough information to characterize this 
reduction in detail. In any case, although we calibrated 
the model to mimic the progression of DCCT in 
sensitivity analysis, the results remain robust. 
Table 2 shows the results of the validation against the 
model from Health Quality Ontario (Health Quality 
Ontario 2018). Our model faithfully reproduced the life 
expectancy of the population, with relative errors lower 
than 2.5%. Results in quality-adjusted life expectancy 
also obtained low relative errors (<5%). The greatest 
discrepancy occurred with the costs, and could stem from 
the structural differences between the models: the model 
from Health Quality Ontario had absorbing states for 
amputation, end-stage renal disease or blindness, while 
the discrete event simulation used in this report allows an 
individual to suffer all those complications at the same 
time. Therefore, the former model may be 
underestimating the costs associated with treating 
multiple complications as the disease progresses. 
The simulation model handles the effectiveness of the 
interventions in several ways. An intervention may 
reduce the HbA1c of the patient, hence increasing the 
time to suffer most complications. Other interventions 
may directly reduce the risk of a specific complication. 
The application will include a set of predefined 
interventions, characterized according to an exhaustive 
review of the literature; but the user will be able to create 
his/her own interventions too, by posing a tentative 
effectiveness and observing the expected evolution of the 
patient. 
 

 
 

Table 1: Validation of the model against the cumulative incidence of complications in DCCT 
Intervention Complication DCCT Our model Relative error Absolute error (pp) 

Conventional 
Microalbuminuria 27.30% 25.52% 6.52% 1.78 

Background retinopathy 52.20% 21.62% 58.58% 30.58 
Neuropathy 21.30% 18.74% 12.02% 2.56 

Intensive 
Microalbuminuria 16% 16.16% 1.00% 0.16 

Background retinopathy 14.30% 9.94% 30.49% 4.36 
Neuropathy 10% 10.26% 2.60% 0.26 

pp: percentage points 
  

Table 2. Validation of the model against the model from Health Quality Ontario 
Intervention Item Canada model Our model Relative error 

SMBG plus multiple daily injections 
Cost $125,586.00 $180,090.03 43.40% 

QALY 18.812 17.962 4.52% 
LY 26.411 26.688 1.05% 

SAP 
Cost $258,306.00 $332,805.05 28.84% 

QALY 18.944 18.417 2.78% 
LY 26.564 27.170 2.28% 

LY: Life years; QALY: Quality-adjusted life years; SAP: sensor-augmented pump; SMBG: self-monitoring of blood glucose 
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4.2. Parameter adaptation system 

As the volume of available data increases, we want to add 
new input variables to the system. It is possible that, by 
increasing the complexity of the model, the simulation 
will no longer properly represent the underlying 
relationships in the new data. At this point, we want to 
continue using the simulation to predict the estimated 
times to develop each of the pathologies depending on 
the current input variables under study (such as HbA1c 
and age), since that model has been obtained from large 
volumes of data and represents the relationship that exists 
between the input and output variables at a population 
level. However, these generalist predictions may not fit 
properly at the individual level, especially when new 
information is available. Therefore, we want to 
complement this model, with a system based on Machine 
Learning that predicts the estimated times to develop 
T1DM-related complications by using new input 
variables. These new input variables may include 
information on the presence of comorbidities, current 
treatment, and physiological or biochemical 
characteristics of the patient, both punctual estimates and 
time series. As the volume of available data increases, 
this system will learn new patterns in the data that serve 
to particularize predictions at the individual level. We 
will try different machine learning techniques such as 
neural networks, decision trees, probabilistic methods 
such as Naive Bayes or logistic regression, or kernel-
based methods such as Support Vector Machines. 
 

4.3. CDSS interface 

The CDSS interface actually represents two different 
interfaces for two different audiences.  
The clinician requires a clear interface that presents the 
simulation results. The interface allows a clinician to 
select a patient, preselect among different treatment 
strategies or interventions, and ask the system for 
prioritizing such interventions.  
The second audience are health system decision maker. 
In this case, the interface becomes a dashboard to 
monitor the use of interventions and to track their actual 
effectiveness. The dashboard also shows a set of indexes 
on the use of cost-effective interventions by clinicians. 
Therefore, health system decision makers could 
economically incentivize clinicians to adhere to cost-
effective interventions, and then track the achievement of 
the objectives. 
 
5. CONCLUSIONS AND FURTHER WORK 

Health care for diabetes requires the best support tools to 
improve not only the health of the patient, but also the 
sustainability of the public health systems. We have 
presented the first step towards an ambitious project on a 
decision-support system for clinicians that will help 
choosing the best treatment for T1DM patients. “Best” 
here refers to effectiveness of treatment, but also to cost-
effectiveness. This second dimension will allow the 
managers of the public health systems to incorporate 
incentives for the use of the most cost-effectiveness 
treatments. 

Up to now, a first version of the core simulation model is 
ready, which has been validated against well-known 
studies. We have already prepared a prototype of a 
standard intervention with insulin pump. 
With the validated simulation model, we have a robust 
basis for parsimoniously incorporating Machine 
Learning techniques that will improve the model fitting 
to individual patients, and thus will move towards 
predictions that are more precise. 
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