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ABSTRACT 
Patient specific dosimetry established during the last 

decade in modern radio-therapy. Usually, tracer kinetics 

in main compartments of observed metabolism is 

assessed from anterior and posterior whole body scans. 

The effective doses for each organ, derived by the MIRD 

scheme, provide evidence for following radio-

therapeutic treatment and helps to meet vital dose limits 

for critical organs, e.g. kidneys. The calculation of 

individual dose in a three-dimensional context leads to 

more accurate dose estimates, as was proven by intensive 

research, but is still on the cusp to clinical application.  

In this work, a statistical approach, based on multi-modal 

image and feature data, is presented, to overcome manual 

segmentation, the most time consuming step, in 3D based 

dose calculation. 3D data volumes from a hybrid SPECT 

study, comprising SPECT and CT data, covering main 

compartments of metabolism, build the image features of 

a Gaussian classifier. From prior segmentations organ-

specific membership maps are derived, and substituted as 

additional feature into the segmentation procedure. 

Centroids, eccentricity and principal axes of organ 

models are registered to a rough thresholded image of the 

SPECT component, and define membership coefficients 

of the voxels.  

The new approach yields accurate results, even with real 

patient data. The new method needs minimal user 

interaction during selection of some sample regions, thus 

showing high potential for implementation in a clinical 

workflow. 
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1. INTRODUCTION 
Radiotherapy is a strongly evolving branch in modern 

nuclear medicine. In contrast to tele-therapy, it affects the      

lethal impact, by transfer of the radioactive particles 

directly into the tumour. Accumulation processes in the 

tumour-tissue, utilizing specific bindings of trace-

molecules, shall reduce the region of lethal effects to the 

target region and protect surrounding tissues, specifically 

essential organs, from radiation stress.  

Nuclear medicine therapy came always along with 

radiation protection. First attempts were made using 

static phantoms, built from bottles (Bush 1949), yielding 

rough dose estimates, for each radiopharmaceutical and 

therapy application under consideration. 

Consideration of patient scans leads to individual dose 

planning. Exposure data, measured from organ scans, are 

combined with  Monte-Carlo dose calculations, based on 

standardized phantom geometries. Standardized 

tabulated values exist for each therapeutic isotope, 

applied to various different human models, e.g. pediatric, 

female, pregnant, and male body phantoms. Results for 

all relevant body compartments are published in the 

ICRP reports. The principles are implemented in the 

software package MIRDOSE (Stabin 1996), the clinical 

standard until 2004, before OLINDA was deployed 

(Stabin and Siegel 2003). 

 

 
Figure 1: Manually drawn regions used for dose 

calculation. Regions are drawn over whole body scans, 

displayed in anterior and posterior view: kidneys (brown, 

cyan), liver (green), spleen (purple), bladder (ocher), 

body background (gold), total body (blue), and the 

reference standard (orange).  

 

With the further development of imaging 

modalities, anthropomorphic models are refined towards 

realistically shaped organs. These models are derived 

from segmentation of measured 3D data (Schläger 2011). 

 Individual dose planning focuses on the assessment 

of pharmacokinetics and accumulation of the radioactive 

isotope in every single patient. Most therapeutic 

radiopharmaceuticals are mainly beta emitters and have 
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no or only weak gamma lines in their emission spectra, 

inhibiting assessment of radioactive uptake. In this case  

an isotope with similar pharmacokinetics but strong 

gamma spectrum is substituted to perform the dose 

estimation scans. Time activity curves for all relevant 

organs, providing the essential information for the 

following dose calculation, are estimated from emitted 

cumulative counts. Regions of interest (ROIs) are drawn 

manually over the whole body images and evaluated at 

each point in time, cf. Fig1. To correct for the latter 

applied therapeutic isotope the summed counts are 

modified, reflecting the physical half-life-time of the 

therapeutic isotope (Mirzarei et al 2013).  

Projection may lead to overlapping ROIs in 2D 

scans making accurate rating of concerned TACs very 

difficult. Approaches with factor analysis were made for 

distinguishing overlapping regions, utilizing small 

differences in tracer dynamics (Backfrieder et al. 1996, 

Backfrieder and Zwettler 2015, Sámal et al. 1987, 1989) 

Recent approaches of individual dose planning are 

based on hybrid tomography data, SPECT-CT or PET-

CT, in combination with 2D whole body data series for 

estimation of temporal evolution dose distribution (Lee 

2015, Backfrieder 2018), but until now costly image 

acquisition and data processing in 3D are drawbacks in 

clinical application of 3D dosimetry. 

In the current approach a method for automated 

segmentation in 3D based on bi-modal SPECT-CT Data 

is developed, substituting a statistical membership map 

as further feature to a standard Gaussian discrimination 

process to improve segmentation, thus fostering 3D 

dosimetry in clinical procedures.  

 

2. MATERIALS 
Imaging protocol for dose estimation in nuclear medicine 

radiation therapy comprises multiple patient studies. A 

three dimensional SPECT scan, together with a low dose 

CT scan, provide general information about specific 

uptake in a 3D context, and the CT allows attenuation 

correction for further improvement estimating true 

source counts. Temporal behavior is derived from a 

series of planar whole body images. 

Data from six patients, three male and three female, age 

ranging from 52 to 79 years, are examined. Each patient 

study comprises a SPECT and CT volume image, and six 

planar whole body scans.  

2.1. Whole body scans 
After administration of 60 MBq In-111, whole body 

scans are acquired 20 min, 90 min, 24h, 48h, 72h, and 

96h after injection. Image data are acquired with a 

double-headed gamma camera, Philips BrightView. 

Detectors are in 180 degree position. Anterior and 

posterior data are captured on a 1024x512 image matrix, 

2.8mm pixel-size and scan-speed 10cm/min. Figure 2 

shows the full whole body series in anterior view. 

Images are scaled to individual data ranges. In early 

images, the content of the urinary bladder dominates the 

image dynamics, thus diminishing organ contrast. In 

latter frames, kidneys show higher relative intensity 

indicating the washing out of radioisotopes from blood. 

Uptake of liver and spleen is increasing; urinary bladder 

shows still substantial filling. The following frames show 

main residence of the radioactive substances in liver, 

spleen and kidneys. The residence times in spleen and 

liver are slightly higher than in kidneys, indicated by 

higher count rates. Accumulation in these organs is 

responsible for main dose stress. 

 
Figure 2: Anterior projection data set. The series of 

whole body scans shows the dynamic processes, six 

scans cover a period of 96 hours. Projection images are 

acquired on a 1024 by 512 matrix, with 10cm/min scan 

speed. The intensity window is scaled to 45% of the 

maximum in each individual frame.  

 

2.2. Volume scans 
SPECT and CT data are taken directly after the 90 min 

planar whole body scan. SPECT projections are acquired 

on an elliptical, body approaching orbit with 3 degrees 

rotational increment, 20s acquisition time on a 130x130 

matrix, with a squared FOV of 605mm length. A series 

consists of 90 slices, with thickness 4.66mm. Images are 

reconstructed with an OSEM algorithm and attenuation 

corrected. CT data are on a 512x512 matrix with 

isotropic voxel-size of 1mm. The volume comprises 406 

slices. Figure 3 shows an identical slice from both 

SPECT (a) and CT (b). 

3. METHODS 
The MIRD approach leads to an estimate of effective 

doses for each organ, respectively compartment, 

considering it as mutual source and target for all others 

(Snyder et al. 1975). To obtain realistic dose values, 

estimates need reliable measurements of emitted 

radiation. In standard clinical procedures, regions are 

manually drawn over the whole body scans and 

accumulated counts build the samples for the time 
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activity curves (TACs), yielding the total counts over this 

region. However, this approach suffers from general 

information loss in 2D projection images. For proper 

consideration of attenuation effects and correction of 

overlapping regions, three-dimensional segmentation is 

inevitable. Manual segmentation by drawing regions 

slice by slice is very time consuming and besides 

scientific case studies, it is not likely to take place in a 

clinical workflow.   

Global thresholding of the SPECT image volumes is not 

sufficient, since organs aggregating radiation touch each 

other, e.g. liver and kidney, or liver and spleen, and no 

sufficient discrimination is achievable. Manual post-

processing needs roughly the same efforts as manual 

segmentation. 

A full data set for preparation of radio-therapy 

comprises, besides the planar whole body studies, a 

SPECT and a CT volume scan, as described in the 

materials section. The mutual information from SPECT 

and CT is the basis for segmentation, since CT images 

comprise detailed morphological information. Both 

volumes build a multivariate data model, each pixel has 

a SPECT and CT feature value. Gaussian discrimination 

is intended to obtain accurate segmentation. CT data are 

actually acquired for attenuation correction, hence weak 

x-ray intensity keeps additional patient dose low, but 

causes low contrast in image data. The reduced contrast 

resolution is not sufficient for accurate differentiation 

between considered tissues. As a further dimension, a 

membership feature is substituted, representing a flexible 

model build from former segmentations. 

 

Figure 3: Co-Registration of CT and SPECT image 

volumes. Primary registration inherent to the hybrid 

camera (Philips BrightView) is further refined by MI 

voxel based registration. Columns show CT, CT-SPECT 

overlay, and SPECT images in transversal, coronal, and 

sagittal slice orientation. 

3.1. Thresholding 
Segmentation is a workflow comprising many steps. 

During the first step, scan data are prepared for 

segmentation. Double thresholds are applied to the CT 

and the SPECT image volumes to exclude all voxels, 

outside the limits, from further consideration. All the 

segmented voxels are subject to multispectral 

classification. In this process, voxels with similar 

features are grouped together. The features are its 

respective intensity value in the specific modalities and 

the value from the probability map, defining a fuzzy 

membership to a tissue type. Exact registration of the 

scans is an inevitable requirement for successful 

registration. 

3.2. Registration 
Mutual information is a statistical measure from 

information theory; it describes the relation of symbols 

in two coherent data sets, respective tissues or 

morphologies. It is extensively used in image registration 

of multimodal data, where correlation methods are not 

applicable to modality specific manifestation of tissue. In 

perfectly registered images, mutual information is 

maximized (Studholme et al. 1996, Hill et al. 1998, Crum 

et al. 2003). 

For aligment of two-dimensional images, X and Y, the 

global maximum in a three-dimensional variable space, 

one rotational and two translational degrees of freedom, 

is determined. Mutual information of both images is 

maximized by steepest gradient search 
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In the above equation p(x,y) denotes the joint probability 

of images X and Y, the probabilities of both single images 

are represented by p(x) and p(y). 

 

Figure 4: Feature images with samples for liver (green-

yellow) and kidneys (red). Regions for sampling are 

drawn simultaneously on, both the SPECT image (a) and 

CT image (b). The distributions derived from the samples 

are drawn over the scattergram (c). 

3.3. Multi-spectral classification 
Co-registered data build the base features of the 

multispectral classification procedure. Intensity values of 

a specific tissue type or organ, in respective modality, 

build clusters in feature space, i.e. the scattergram. Each 

voxel is an object in feature space, and its position is 

determined by the intensity values along the axes. In this 

work we us a simple Gaussian data model for clustering 
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(Kaufman and Rousseeuw 2005). But the approach can 

easily refined by substituting another clustering 

technique. 

In this model, each tissue type is described by a 

multivariate Gaussian distribution. 

𝑓(𝑥⃗) =
1

√(2𝜋)𝑝‖Σ‖
exp (−

1

2
(𝑥⃗ − 𝜇)𝑇𝛴−1(𝑥⃗ − 𝜇))        (2) 

The 𝑥⃗ is the object or voxel with the image values from 

each modality and the rest of the p features describing the 

object-characteristics, 𝜇 is the mean of the distribution, 

and Σ the covariance matrix.  

For first estimates for the parameters 𝜇 and Σ, regions are 

drawn manually over the tissues, and the estimates are 

calculated, based on these. Figure 4 shows an example 

for these regions. Regions are displayed over the feature 

images, too. The application allows choice of any feature 

as image slice in two canvases. The regions are displayed 

in different colors, selected voxels are colored in the 

scatergram, displayed at the bottom. After selecting 

samples the first estimate of the distributions are 

calculated. The distributions are limited by an 𝛼 value, to 

achieve optimal segmentation. In the example shown in 

Figure  4.c a value of 0.03 is chosen. 

These initial distributions are the starting points for an 

iterative procedure to refine segmentation. The 

distributions are used for segmentation of the whole 

image volume in each step. The intermediate 

segmentations are the samples for the next iteration, 

providing new estimates for mean and covariance and 

updated distributions for the next iteration. In this 

approach, a fixed number of 5 iterations is applied. 

3.4. Topological membership map 
A topological membership map is built to further support 

segmentation, since SPECT and CT values provide 

sometimes weak differentiation between tissue types. 

The map is based on prior segmentations. Relevant 

features as centroids, principal axes, eccentricity and 

some statistical moments are estimated from these data 

sets. Each new segmentation updates this parameter, 

leading to a steadily improving prior model. The model  

is globally registered against the preliminary 

segmentation after thresholding, to provide an initial 

position. The single organs are further adapted to local 

shape of the given segment. For each organ, a topological 

map is substituted as artificial feature to the multispectral 

classifier.  

4. RESULTS 
As a proof of concept for the elaborated segmentation 

method, anonymized clinical data from  patient studies 

are processed. Topological membership maps provide 

useful information to employ Gaussian clustering for 

meaningful automated segmentation. Segmentation of 

liver and kidney based solely on SPECT and CT data is 

shown in Figure 6.a. Samples are drawn, as shown in 

Figure 4.a and 4.b, on representative slices, of the 

coronary cut. Regions are drawn on the adjacent slices, 

also, to reach sufficient sample size. The distributions 

calculated by classification on a confidence interval of 

97% are displayed over the scattergram, cf. to the bottom 

row of Figure 4.c. The resulting classification is shown 

in Figure 6.a. Identified soft tissue voxels are colored, 

liver is shown as green-yellow and kidneys are labeled 

red. To keep comparability in Figure 6 the same slice is 

displayed as in Figure 4. As clearly seen, clustering based 

on CT and SPECT data, without any position 

information, provides very poor segmentation. Most of 

the classifications are wrong. The method, without any 

further improvement, is not applicable for segmentation, 

as shown in Figure 6.a.  

 

Figure 5: Standardized topological membership maps 

generated from most significant PCs. Topological 

models are calculated for liver (top row) and kidney 

(bottom row). Figures (a) and (c) show the cumulative 

contours from PC1 up to PC 6. The maps in (b) and (d) 

show the probability maps for membership based on 

these PC-curves. 

Topological membership maps substitute the required 

position information. A principal component model of a 

priori known outer contours gathered from former 

segmentations is built. The contours are registered to 

each other and resampled on an equally spaced angular 

grid, to provide point correspondence for PCs. The 

resulting PC models are shown in Figure 5 on the left 

column. The curve of the first, most significant PC 

represents the average shape of all captured contours. All 

further contours represent the deviations from the prior 

curves. The plot shows the curves for liver and right 

kidney reconstructed from 1 up to 6 components, cf. 

Figure 5.a and 5.c. These curves are converted to 

probabilities by accumulation of the regions surrounded 

by the PC curves. Figure 5.b and 5.d display the maps for 

liver and right kidney.  Substitution of topological 

membership maps provides the additional position 

information to achieve proper segmentation. Figure 6.b 

shows the improved results. Kidneys are clearly visible 

and accurately distinguished from surrounding tissue. 

Liver is slightly over-segmented, but superior to the 

segmentation before. Post-processing with 

morphological operations may further improve results. 

The proposed method of topological membership maps 

is self-learning. Each new segmentation is added to the 
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data pool, providing new variability and diversity of 

contours. By the way, the PC model is further refined. 

 

Figure 6: Automated segmentation based on 

multispectral classification. Liver (green-yellow) and 

kidneys (red) are classified. (a) Classification based on 

SPECT counts and CT units, solely, yield weak results. 

Substitution of topological membership maps improves 

segmentation substantially (b).  

5. DISCUSSION 
Internal dosimetry raises its importance with the 

increasing availability of a great variety of tracer 

molecules, enabling individual tumor therapy. Ethic and 

legal constraints put focus on reliable and accurate 

dosimetry. With common whole body scintigraphy, 

problems of overlapping organs in projections and 

deterioration of counts by attenuation are inherent to the 

method. The installation of modern 3D imaging 

modalities allow a three dimensional sight of the 

problem, at the cost of at least two additional scans and 

some very time consuming data processing. This work 

proposes a reasonable approach for mainly automated 

definition of 3D VOIs with little user interaction 

collecting representative sample data, in contrast to 

manual drawing organ ROIs.  

The method is promising for establishing 3D dosimetry 

as standard in clinical daily routine, but it still needs 

improvement by further post processing and careful 

testing with clinical data.  
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