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ABSTRACT 

The paper is dedicated to proposed modelling approach 

for supply networks. The original structure of network 

systems can be modelled as complex adaptive systems 

and use agent-oriented simulation to demonstrate origin. 

The structure is clarified by expert opinion with use of 

DEMATEL method. The suitability of supply networks 

can be measured by multiple objectives, such as 

economic, environmental, social, and others. Traditional 

concepts of optimality focus on valuation of already 

given systems. We propose to use a methodology for 

optimal system design. As a methodology of optimal 

system design can be employed De Novo Multi-objective 

Linear Programming for reshaping feasible sets in linear 

systems. 
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DEMATEL, De Novo optimisation 

 

 

1. INTRODUCTION 

Supply network management has generated a substantial 

amount of interest both by managers and researchers (see 

Tayur et al. 2000). The design of supply networks plays 

an important role in supply network management. The 

suitability of supply networks can be measured by 

multiple objectives, such as economic, environmental, 

social, technological, and others.  Supply network 

structure and behaviour is changing dynamically 

(Majovská and Fiala 2015, 2016).  

Modelling of supply network design is not a simple 

matter, it is necessary to combine random elements with 

expert evaluation and parameter adjustments in dynamic 

changes. The aim of the paper is to propose such a 

procedure. The overall idea of the proposed procedure 

lies in the interconnected steps from simulating the 

design of the supply network, through expert assessment 

of the essential parts and links between them, to 

optimizing the design parameters, including the 

necessary resources to create a supply network within a 

specified budget. The contribution of this paper is the 

proposed three-stage procedure for multi-criteria design 

of supply networks: 

 

 

 Generation of potential elements of supply 

network. 

 Expert evaluation and simplification of the 

network structure. 

 Continuous reconfiguration and reshaping of 

systems boundaries. 

 

In this paper, the individual stages are modified and 

adapted to the needs of the design of supply networks and 

connected in an integrated approach. The first stage is 

based on a dynamic generation of potential elements of 

supply networks. Structure and behaviour dynamics of 

network systems can be modelled as complex adaptive 

systems and use agent-oriented simulation to 

demonstrate origin, perturbation effects, and sensitivity 

with regard to initial conditions. The model is based on a 

supply network as a system consisting of an environment 

in which firms create interactions based on simple rules 

of conduct to meet global demand (Fiala and Kuncová 

2019). 

The second stage is devoted to expert evaluation and 

simplification of the supply network structure. The 

DEMATEL (Decision Making Trial and Evaluation 

Laboratory) method (Gabus and Fontela 1972) is used 

for this stage.  

The third stage is oriented on a continuous 

reconfiguration and reshaping of systems boundaries.   

Multi-objective supply network design is formulated and 

solved by De Novo approach. Traditional concepts of 

optimality focus on valuation of already given systems. 

New concept of designing optimal systems was proposed 

(Zeleny 2010). Multi-objective linear programming 

(MOLP) is a model of optimizing a given system by 

multiple objectives. As a methodology of optimal system 

design can be employed De Novo programming for 

reshaping feasible sets in linear systems. The paper 

presents approaches for solving the Multi-objective De 

Novo linear programming (MODNLP) problem for 

design of multi-objective supply networks. The approach 

is based on reformulation of MOLP problem by given 

prices of resources and the given budget. Searching for a 

better portfolio of resources leads to a continuous 

reconfiguration and reshaping of systems boundaries. 
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Technological innovations bring improvements to the 

desired objectives and the better utilization of available 

resources. These changes can lead to beyond tradeoff-

free solutions. The de Novo approach was adapted for 

supply network design.  

 

2. GENERATING SUPPLY NETWORKS 

Supply network is defined as a system of clusters with: 

 suppliers,  

 manufacturers,  

 distributors,  

 retailers,  

 customers, 

where  

 material,  

 financial 

 information, 

 decision 

flows connect participants in both directions (see Fiala 

2005). A supply network is a complex and dynamic 

supply and demand network of agents, activities, 

resources, technology and information involved in 

moving a product or service from supplier to customer. 

Most supply networks are composed of independent 

units with individual preferences. Each unit will attempt 

to optimize his own preference. Behaviour that is locally 

efficient can be inefficient from a global point of view. 

An information asymmetry is a source of inefficiency in 

supply networks. The so-called bullwhip effect, 

describing growing variation upstream in a supply 

network, is probably the most famous demonstration of 

inefficiency and system dynamics in supply networks. 

Information sharing is a very important issue for 

coordinating actions of units in networks. 

The dynamic generation of supply networks consists in 

generating potential network members and inter-

relationships. To understand the growth and 

development of dynamics, it is necessary to monitor the 

time-dependent behaviour of the model. Simulation is a 

frequently used methodology for analysing the time-

varying properties of a system.  Agent-oriented 

simulation takes place in a system consisting of an 

environment in which agents (nodes) create interactions 

(edges) based on simple rules of conduct to meet global 

demand. Stochastic environmental parameters, 

describing market conditions and demand, a node-based 

decision-making scheme, so-called fitness functions 

modelling the strength of companies, all influence the 

dynamics of structure and behaviour of the developing 

supply network (Fiala and Kuncová 2019). 

As new industries emerge, supply networks grow, 

creating new relationships between firms that cooperate 

to meet demand. New start-ups are involved in supply 

networks. Some companies significantly expanding 

capacity, while others weaken. An alternative scenario 

may be the fact that no companies become dominant and 

the market is relatively evenly distributed among 

participating firms. In a comprehensive adaptive supply 

network model, two aspects are considered: 

 

• number of firms, 

• size of firms. 

 

The next step is to assess the significance of elements and 

relationships between them in the supply network.  

 

3. DEMATEL METHOD 

Expert evaluation and simplification of the supply 

network structure is done using the method DEMATEL. 

The DEMATEL method can be summarized in the 

following steps (Gabus and Fontela 1972): 

 

Step 1. Find the initial direct relation matrix.  

Suppose we have m experts in this study and n elements 

to consider. Each expert is asked to indicate the degree to 

which he believes an element i affects an element j. 

These pairwise comparisons between any two elements 

are denoted by aij and are given an integer score ranging 

from 0, 1, 2, 3, and 4, representing: 

 

0   no influence, 

1   low influence,  

2   medium influence,  

3   high influence, 

4  very high influence.  

 

The scores by each expert will give us a (n, n) non-

negative answer matrix 
kX = [

k

ijx ], with mk 1 . 

The diagonal elements of each answer matrix
kX are all 

set to zero. We can then compute the (n, n) average 

matrix A for all expert opinions by averaging the m 

experts’ scores as follows:  

 

 



m

k

k
ijij x

m
a

1

1
    (1) 

 

The average matrix A=[
ija ] is called the initial direct 

relation matrix. Matrix A shows the initial direct effects 

that an element exerts on and receives from other 

elements. Furthermore, we can map out the causal effect 

between each pair of elements in a system by drawing an 

influence map. DEMATEL can convert the structural 

relations among the elements of a system into an 

intelligible map of the system. 

Step 2. Calculate the normalized initial direct-relation 

matrix.  

The normalized initial direct-relation matrix D is 

obtained by normalizing the initial direct-relation matrix 

A in the following way: 

Let 
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Then 

 AD
s

1
      (3) 
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Since the sum of each row j of matrix A represents the 

total direct effects that element i gives to the other 

elements, 




n

j

ij
ni

a
1

1
max  represents the total direct effects 

of the element with the most direct effects on others. 

Likewise, since the sum of each column i of matrix A 

represents the total direct effects received by element i, 






n

i

ij
nj

a
1

1
max  represents the total direct effects received of 

the element that receives the most direct effects from 

others. The positive scalar s takes the lesser of the two as 

the upper bound, and the matrix D is obtained by dividing 

each element of A by the scalar s. Note that each element 

ijd  of matrix D is between zero and one. 

 

Step 3. Compute the total relation matrix.  

A continuous decrease of the indirect effects of problems 

along the powers of matrix D guarantees convergent 

solutions to the matrix inversion similar to an absorbing 

Markov chain matrix. Note that lim
𝑘→∞

𝐃𝑘 = 𝟎  and 

lim
𝑘→∞

(𝐈 + 𝐃 + 𝐃𝟐 + ⋯ + 𝐃𝒌) = (𝐈 − 𝐃)−1, where 0 is 

the (n, n) null matrix and I is the (n, n) identity matrix. 

The total relation matrix T is an (n, n) matrix  

 

 T = [tij]    i, j = 1, 2,…, n, 

 

and is defined as follow: 

 

T = D + D2 + … + Dk = 𝐃(𝐈 + 𝐃 + 𝐃𝟐 + ⋯ + 𝐃𝒌−𝟏) =
𝐃(𝐈 − 𝐃)−1 , as 𝑘 → ∞.           (4) 

 

Vectors r and c are defined representing the sum of rows 

and sum of columns of the total relation matrix T as 

follows: 

 

 r = (ri)      (5) 

 

where ri be the sum of i-th row in matrix T. Then ri shows 

the total effects, both direct and indirect, given by 

element i to the other elements, and  

 

 c = (cj)      (6) 

 

where cj denotes the sum of j-th column in matrix T. 

Then cj shows the total effects, both direct and indirect, 

received by element j from the other elements.  

 

Thus when j = i, the sum (ri + ci) gives an index 

representing the total effects both given and received by 

element i. In other words, (ri + ci) shows the degree of 

importance that element i plays in the system. In 

addition, the difference (ri − ci) shows the net effect that 

element i contributes to the system. When (ri − ci) is 

positive, element i is a net causer, and when (ri − ci)  is 

negative, element i is a net receiver (Tzeng et al. 2007). 

 

Step 4. Set a threshold value and obtain the impact-

relations-map.  

In order to explain the structural relation among the 

elements while keeping the complexity of the system to 

a manageable level, it is necessary to set a threshold 

value p to filter out some negligible effects in matrix T. 

While each element of matrix T provides information on 

how one element affects another, the decision-maker 

must set a threshold value in order to reduce the 

complexity of the structural relation model implicit in 

matrix T. Only some elements, whose effect in matrix T 

is greater than the threshold value, should be chosen and 

shown in an impact-relations-map (Tzeng et al. 2007).  

 

4. MULTI-OBJECTIVE SUPPLY NETWORKS 

In the next part, we formulate a multi-objective supply 

network design problem. The mathematical program 

determines the ideal locations for each facility and 

allocates the activity at each facility such that the 

multiple objectives are considered and the constraints of 

meeting the customer demand and the facility capacity 

are satisfied. The presented model of a supply network 

consists of 4 layers with m suppliers, S1, S2, … Sm, n 

potential producers, P1, P2, … Pn, p potential distributors, 

D1, D2, … Dp, and r customers, C1, C2, … Cn. The 

following notation is used:  

ai  = annual supply capacity of supplier i, bj = annual 

potential capacity of producer j, 

wk = annual potential capacity of distributor k, dl  = 

annual demand - customer l, 
P

jf = fixed cost of potential producer j, 
D

kf  = fixed cost 

of potential distributor k, 
S

ijc  = unit transportation cost from Si to Pj, 
P

jkc  = unit 

transportation cost from Pj to Dk, 
D

klc  = unit transportation cost from Dk to Cl, 
S

ije  = unit 

pollution from Si to Pj, 
P

jke  = unit pollution from Pj to Dk, 
D

kle  = unit 

environmental pollution from Dk to Cl, 
S

ijx  = number of units transported from Si to Pj, 
P

jkx  = 

number of units transported from Pj to Dk, 
D

klx  = number 

of units transported from Dk to Cl, 
P

jy  = bivalent variable for build-up of fixed capacity of 

producer j, 
D

ky = bivalent variable for build-up of fixed capacity of 

distributor k. 

Using the above notations the problem can be formulated 

as follows: 

The model has two objectives. The first one expresses 

minimizing of total costs. The second one expresses 

minimizing of total environmental pollution. 

 

Min  

1

1 1 1 1 1 1 1 1

p p pn m n n r
P P D D S S P P D D

j j k k ij ij jk jk kl kl

j k i j j k k l

z f y f y c x c x c x
       

          
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Min 

 
2

1 1 1 1 1 1

p pm n n r
S S P P D D

ij ij jk jk kl kl

i j j k k l

z e x e x e x
     

      

Subject to the following constraints: 

the amount sent from the supplier to producers cannot 

exceed the capacity  

 ,   

1

  1, 2, ..., ,
n

ij i

j

x a i m


   

the amount produced by the producer  cannot exceed the 

producer capacity 

 

1

,    1,  2,  ...,  ,
p

jk j j

k

x b y j n


   

the amount shipped from the distributor should not 

exceed the distributor capacity 

 

1

,     1,  2,  ..., ,
r

kl k k

l

x w y k p


   

the amount shipped to the customer must equal the 

customer demand 

 

1

,     1,  2,  ...,  ,
p

kl l

k

x d l r


   

the amount shipped out of producers cannot exceed units 

received from suppliers 

 

1 1

0,    1,  2,  ...,  ,
pm

ij jk

i k

x x j n
 

     

the amount shipped out of distributors cannot exceed 

quantity received from producers 

 

1 1

0,    1,  2,  ...,  ,
n r

jk kl

j l

x x k p
 

      

binary and non-negativity constraints 

 , 0,1 ,

, , 0,   1,  2,  ...,  ,   1,  2,  ..., ,    1,  2,  ...,  ,   1,  2,  ...,  .

j k

ij jk kl

y y

x x x i m j n k p l r



    

 

 

The formulated model is a multi-objective linear 

programming problem (MOLP). The problem can be 

solved by some MOLP methods.  

 

5. OPTIMIZING GIVEN SYSTEMS 

Multi-objective linear programming (MOLP) is a model 

of optimizing a given system by multiple objectives. In 

MOLP problems it is usually impossible to optimize all 

objectives together in a given system. Trade-off means 

that one cannot increase the level of satisfaction for an 

objective without decreasing this for another objective. 

Multi-objective linear programming (MOLP) problem 

can be described as follows 

 

 “Max” z = Cx     

 s.t.   Ax ≤ b,  x ≥ 0    (7) 

 

where C is a (k, n) – matrix of objective coefficients, A is 

a (m, n) – matrix of structural coefficients, b is an m-

vector of known resource restrictions, x is an n-vector of 

decision variables. In MOLP problems it is usually 

impossible to optimize all objectives in a given system. 

For multi-objective programming problems the concept 

of non-dominated solutions is used (see for example 

Steuer 1986). A compromise solution is selected from the 

set of non-dominated solutions. There are proposed 

many methods. Most of the methods are based on trade-

offs. The next part is devoted to the trade-off free 

approach. 

 

6. DESIGNING OPTIMAL SYSTEMS 

Multi-objective De Novo linear programming 

(MODNLP) is a problem for designing an optimal 

system by reshaping the feasible set. By given prices of 

resources and the given budget the MOLP problem (7) is 

reformulated in the MODNLP problem (8)  

 

 “Max” z = Cx 

 s.t. Ax - b ≤  0, pb ≤ B , x ≥ 0   (8) 

 

where b is an m-vector of unknown resource restrictions, 

p is an m-vector of resource prices, and B is the given 

total available budget.  

From (8) follows  pAx  ≤  pb  ≤ B. 

Defining an n-vector of unit costs v = pA  we can rewrite 

the problem (8) as 

 

 “Max” z = Cx  

 s.t. vx  ≤ B,  x  ≥ 0    (9) 

 

Solving single objective problems  

 

 Max z i   = c i x, i = 1,2,…,k 

 s.t. vx ≤ B, x ≥ 0               (10) 

 

 z* is a k – vector of objective values for the ideal system 

with respect to B. 

The problems (10) are continuous “knapsack” problems, 

the solutions are 

 

 










ij

ii
j jjvB

jj
x

i
,

,0 , 

where 




 )/(max),...,1( j
i
j

j
i vcnjj  . 

The meta-optimum problem can be formulated as 

follows 

 

 Min  f = vx  

 s.t. Cx ≥ z*, x ≥ 0              (11) 

 

Solving the problem (11) provides solution: x*, B* = 

vx*, b* = Ax*. 

The value B* identifies the minimum budget to achieve 

z* through solutions x* and b*. 

The given budget level B ≤ B*. The optimum–path ratio 

for achieving the best performance for a given budget B 

is defined as 

 
*1

B

B
r   

The optimum-path ratio provides an effective and fast 

tool for the efficient optimal redesign of large-scale 

linear systems. Optimal system design for the budget B: 
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 x = r1 x* , b = r1 b* ,  z  = r1 z*. 

 

7. DE NOVO APPROACH FOR MULTI-

OBJECTIVE SUPPLY NETWORKS 

The De Novo approach can be useful in the design of the 

multi-objective supply network. Only a partial relaxation 

of constraints is adopted. Producer and distributor 

capacities are relaxed. Unit costs for capacity build-up 

are computed: 

 
P

jP

j

j

f
p

b
  = cost of unit capacity of potential 

producer j,  

 
D

D k
k

k

f
p

w
 = cost of unit capacity of potential 

distributor k. 

Variables for build-up capacities are introduced: 

 P

ju  = variable for flexible capacity of producer j, 

 D

ku = variable for flexible capacity of producer k. 

The constraints for non-exceeding producer and 

distributor fixed capacities are replaced by the flexible 

capacity constraints and the budget constraint: 

 

 

1

0,    1,  2,  ...,  ,
p

P

jk j

k

x u j n


    

 

1

0,     1,  2,  ..., ,
r

D

kl k

l

x u k p


    

 

1 1

.
pn

P P D D

j j k k

j k

p u p u B
 

    

 

The multi-objective optimization can be then seen as a 

dynamic process. Technological innovations bring 

improvements to the desired objectives and the better 

utilization of available resources. The technological 

innovation matrix T = (tij) is introduced.  The elements in 

the structural matrix A should be reduced by a 

technological progress. The problem (8) is reformulated 

in to the innovation MODNLP problem (12) 

 

 “Max” = Cx 

 s.t.  TAx  - b ≤  0 , pb ≤ B, x ≥ 0             (12) 

 

De Novo approach provides a better solution in multiple 

objectives and also with lower budget because of flexible 

capacity constraints. The capacity of supply network 

members has been optimized with regard to flows in the 

supply network and to budget. 

 

8. CASE STUDY 

We tested the De Novo approach on a case study. A 

supply network is proposed with 3 potential suppliers, 3 

potential manufacturers, 3 potential distributors, 3 

customers. The network is evaluated according to 2 

criteria, the first criterion is aimed at minimizing total 

costs and the second one at minimizing overall 

environmental pollution. Inputs for the model are as 

follows: 

Capacities ai = 100, i = 1, 2, 3; bj = 100, j = 1, 2, 3;  

wk = 100, k = 1, 2, 3; dl = 50, l = 1, 2, 3. 

Fixed costs 𝑓1
𝑃 = 110, 𝑓2

𝑃 = 100, 𝑓3
𝑃 = 120, 𝑓1

𝐷 = 120, 

𝑓2
𝐷 = 110, 𝑓3

𝐷 = 150. 

Unit transport costs and unit pollution are shown in the 

Table 1 and Table 2. 

  

Table 1: Unit transport costs 

𝑐𝑖𝑗
𝑆  1 2 3 𝑐𝑗𝑘

𝑃  1 2 3 𝑐𝑘𝑙
𝐷  1 2 3 

1 5 10 6 1 7 5 9 1 8 3 10 

2 8 9 7 2 6 8 4 2 6 5 4 

3 3 6 8 3 5 7 9 3 7 3 5 

 

Table 2: Unit pollution 

𝑒𝑖𝑗
𝑆  1 2 3 𝑒𝑗𝑘

𝑃  1 2 3 𝑒𝑘𝑙
𝐷  1 2 3 

1 4 3 8 1 8 7 9 1 8 6 2 

2 8 9 2 2 6 8 4 2 8 9 8 

3 7 6 8 3 4 7 9 3 5 3 5 

 

This model was solved by different approaches. The first 

two approaches minimize each criterion separately. The 

compromise solution is calculated by the traditional 

STEM interactive approach for multi-criterion tasks and 

the De Novo approach was used. The following are non-

zero values of the variables that express the number of 

units of product shipped between each supply network 

layer. These values are given for each problem-solving 

approach. 

Min z1:  𝑥13
𝑆  = 50, 𝑥31

𝑆  = 100, 𝑥12
𝑃  = 100, 𝑥31

𝑃  = 50, 𝑥12
𝐷  = 

50, 𝑥21
𝐷  = 50, 𝑥23

𝐷  = 50. 

Min z2:  𝑥12
𝑆  = 100, 𝑥23

𝑆  = 50, 𝑥23
𝑃  = 100, 𝑥31

𝑃  = 50, 𝑥13
𝐷  = 

50, 𝑥31
𝐷  = 50, 𝑥32

𝐷  = 50. 

STEM: 𝑥11
𝑆  = 58.13, 𝑥23

𝑆  = 91.87, 𝑥12
𝑃  = 58.13, 𝑥31

𝑃  = 

91.87, 𝑥12
𝐷  = 46.87, 𝑥13

𝐷  = 45, 𝑥21
𝐷  = 50, 𝑥22

𝐷  = 3.12, 𝑥23
𝐷  = 

50. 

De Novo: 𝑥23
𝑆  = 62.86, 𝑥32

𝑆  = 87.14, 𝑥21
𝑃  = 10, 𝑥23

𝑃  = 

77.14, 𝑥31
𝑃  = 62.86, 𝑥12

𝐷  = 50, 𝑥13
𝐷  = 22.86,  𝑥31

𝐷  = 50, 𝑥33
𝐷  

= 27.14. 

 

The criteria values z1a z2 and the budget B are compared 

according to these solutions. De Novo solution is better 

in all values than the STEM solution. De Novo approach 

provides better solutions on both criteria and also with a 

lower budget due to flexible capacity constraints. The 

capacity of supply network members have been 

optimized for flows in the supply network and budget. 

The comparison of results are shown in Table 3. 

 

Table 3: Comparison of solution results 

 Min z1 Min z2 STEM De Novo 

z1 2460 3490 3070 3000 

z2 3100 1800 2030 2000 

B 460 490 460 365.71 

 

9. CONCLUSIONS 

The proposed methodology of supply network design 

modelling consists of three stages. In the first stage, the 

network system of potential members and their 

interconnections is simulated. The second stage is 
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devoted to expert evaluation of the proposed network 

system by the DEMATEL method. In the third stage, De 

Novo approach was applied for multi-objective supply 

network design problem and provides better solution 

than traditional approaches applied on fixed constraints. 

The design problem was formulated as MOLP problem. 

The economic and environmental objectives were used 

in the model but multiple objectives can be used in 

general. Technological innovations bring improvements 

to the desired objectives and the better utilization of 

available resources. These changes can lead to beyond 

tradeoff-free solutions. The combination of these three 

stages and their repetition over time provides an efficient 

and flexible tool for modeling supply network design. 

The approach can be enriched with other tools such as 

game theory (Fiala 2016). 
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ABSTRACT 
The 48V hybrid system has mostly adopted parallel 
hybrid system architecture. In the parallel hybrid system, 
various architecture can be derived depending on the 
location of the motor. In this paper, we explored a 
hybrid system architecture considering one or two 
motors and 48V electric supercharger and derived the 
optimal architecture by comparing the performance of 
each architecture. Performance of the hybrid system is 
mostly evaluated as fuel economy. However, since the 
hybrid system has increasingly been applied to various 
types of vehicles with different purpose of the operation, 
another performance index for evaluating a hybrid 
system is needed. Therefore, in this paper, we 
introduced an additional performance index to evaluate 
the hybrid electric drive system and used it to derive the 
optimal architecture of the hybrid electric drive system. 
We used Dynamic programming (DP) to evaluate each 
architecture and DP simulation was performed in the 
Matlab environment. 

Keywords: 48V mild hybrid system, HEV architecture, 
Dynamic programming, Performance index 

1. INTRODUCTION
As fuel economy and emission gas regulations are 
strengthened globally, environmentally friendly 
vehicles of various types (BEV, FCEV, (P)HEV, etc.) 
are being introduced to the market. However, due to the 
problem of the high-cost electric drive system or 
charging infrastructure, it is still difficult for vehicles to 
replace the demand for existing internal combustion 
engine vehicles. According to this trend, a mild hybrid 
system based on a 48V power supply has recently 
attracted attention as a new alternative and many kinds 
of research about 48V mild hybrid system are being 
conducted. (Malte Kuypers 2014; Mark Schudeleit and 
Christian Sieg 2015; Anthony Rick and Brain Sisk 
2015; Andreas Baumgardt and Dieter Gerling 2015a,b; 

Anthony Rick and Brain Sisk 2015;  Zifan Liu and 
Andrej Ivanco 2016; Junyong Park and Taeho Park 
2017) 
There are various hybrid drive system architectures 
according to the arrangement of the hybrid drive system 
component such as the engine, the motor, and the 
gearbox. 48V hybrid drive systems adopt parallel 
hybrid architecture mostly, and parallel hybrid 
architectures are generally divided into P0~P4 
according to the location of the motor (Figure 1). And 
many studies have been done on the CO2 reduction 
effect and cost efficiency for each configuration. (Dr. 
Ing. Olivier COPPIN 2016; Ran Bao and Victor Avila 
2017; Thomas Eckenfels and Florian Kolb 2018) 

Figure 1: P0~P4 Architecture 

However recently, there are the cases composing a 48V 
hybrid system including not only one motor but also 
two motor or a 48V electric supercharger, and there is 
still a lack of research on which architecture is optimal 
when these components are considered in 48V hybrid 
system configuration. 
The performance of a hybrid system is evaluated with 
fuel economy mostly. But a hybrid system has been 
being adapted to various vehicle segments, and since a 
consumer’s expectation is different by vehicle segments, 
it is needed that evaluating vehicle with performance 
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other than fuel economy. As related research, Kapadia 
(2017) compared P2 parallel hybrid architecture and 
input split hybrid architecture in terms of not only fuel 
economy but also drivability, launch, power, towing 
performance and packaging, etc.  
Therefore, in this paper, we derived an optimal 48V 
hybrid system architecture according to fuel economy 
and performance index when one or two 48V motor and 
48V electric supercharger are considered. To do this, we 
explored 48V hybrid system architecture manually 
when one or two 48V motors, 48V electric supercharger 
are considered, and we derived an optimal architecture 
through Dynamic programming. In this case, the cost 
function of Dynamic programming was modified to 
derive optimal architecture for fuel economy and 
performance index. Here, the performance index is the 
index which can evaluate hybrid system performance 
other than fuel economy, and in this paper, we defined 
an electric auxiliary load assist ability and drive power 
reserve as a performance index. 

2. EXPLORATION TARGET HYBRID DRIVE
ARCHITECTURE

When considering one motor, a 48V hybrid system 
architecture which can be derived is like Figure 1. In 
this case, since P0 and P1 architectures have lower fuel 
economy than P2, P3, and P4 generally, we select P2, 
P3, and P4 architecture as exploration target hybrid 
drive architecture having one motor.  
And we select the exploration target hybrid drive 
architecture having two motors like Figure 2. In the 
figure, the P0D architecture is the architecture that can 
operate mechanical auxiliary load (ex. water pump, air-
conditioner compressor) independently by separating 
the mechanical auxiliary load from the engine according 
to the situation. And the motor location is the same as 
P0 architecture. Since P0D has little higher fuel 
economy than P0 generally, which is not suggested in 
this paper, we select P0D architecture instead of P0 
architecture for exploration. 
Therefore, we select 10 exploration target 48V hybrid 
drive architecture like below according to motor 
location and the number of motors.  

1. Using one motor: P2, P3, P4
2. Using two motor: P0D +P2, P0D+P3, P0D+P4

 P1 +P2, P1+P3, P1+P4 
 P2+P4  

But, above 10 architecture doesn’t consider a 48V 
electric supercharger. Therefore finally, we select a total 
20 exploration target 48V hybrid drive system 
architecture by adding 10 architecture having a 48V 
electric supercharger. 
Table 1 below is the specification of the hybrid drive 
system main components. As we can see in the table, 
the motor power when using two motors is half of the 
power when using one motor. 

Figure 2: 48V Hybrid Drive System Architecture 
with Two Motor 

Table 1: Specification of Vehicle Component 
Component Specification 

Engine 1500 [cc] Gasoline Engine 

Motor 

10 [kW] PMSM 
(when using one motor) 

5 [kW]  PMSM 
(when using two motor) 

Electric 
Supercharger 

5 [kW] PMSM 

Battery 48 [V] / 20 [Ah] Lithium-Ion 

3. MODEL FOR DYNAMIC PROGRAMMING
We used Dynamic Programming (DP) to compare each 
exploration target hybrid drive system architecture. DP 
is a method of global optimization strategies that find 
optimal solutions to optimal control problems based on 
Bellman's principle of optimality. For the hybrid drive 
system, DP is mainly used to analyze the optimal fuel 
economy results by investigating all possible paths of 
the vehicle system in a given driving cycle in advance.  
Therefore, the DP results for any hybrid system 
architecture can be said to be the optimal performance 
of the architecture. So, we carry out DP simulation 
about each exploration target hybrid drive architecture 
and derives optimal architecture by comparing DP 
results. 

3.1. Dynamic programming with dpm.m function 
In this paper, we use Matlab function dpm.m for DP. 
dpm.m is a DP algorithm introduced by Olle Sundström 
and Lino Guzzella (2009) to solve the general 
optimization problem. To solve the optimal control 
problem using the dpm.m function, the user must define 
the Main.m function and the Model function.m function. 
The Main.m function sets the range and grid of control 
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input, state for DP and executes dpm.m. Model 
function.m uses the given inputs to calculate the cost 
and the state of the next step and returns these values to 
dpm.m. In this paper, the model function is the vehicle 
model that calculates the fuel consumption and the SOC 
variation according to the power distribution ratio, the 
electric supercharger speed, and transmission gear stage. 

3.2. Main.m function setting 
As mentioned in Section 3.1, we need the Main.m 
function and the Model function.m to use dpm.m. This 
section introduces the settings for the Main.m function. 
First, we define the control input as below. 

1.  1u : Power distribution ratio for the first motor 

2.  2u : 48V electric supercharger speed 

3.  3u : Gear shift command 

4.  4u : Decoupler on/off command 

5.  5u : Power distribution ratio for the second motor 

The decoupler on/off command 4u  is applied to the 

architecture considering P0D motor, the Power 

distribution ratio for the second motor 5u  is applied to 

the architecture considering two motors. The activated 
control inputs according to architecture is like Table 2. 

Table 2: Control Input Setting according to Hybrid 
Drive System Architecture (O: Use, -: Not use)                                                    

Architecture 1u 2u 3u 4u 5u
P2 O O O - - 
P3 O O O - - 
P4 O O O - - 

P0D+P2 O O O O O 
P0D+P3 O O O O O 
P0D+P4 O O O O O 
P1+P2 O O O - O 
P1+P3 O O O - O 
P1+P4 O O O - O 
P2+P4 O O O - O 

The mathematical equation of each control input is 
defined as follows. 

First, 1u  and 5u  are defined like Table 3. In the 

equations below, TMply ,  is the gear ratio of engine

pulley and transmission respectively, im,T  is the motor 

torque, itot,T  is the vehicle total desired torque ( i =2 for 

P2, 3 for P3, 0D3 for P0D+P3 etc.). And jtot_f,T  is the 

value of vehicle total desired torque minus P4 motor 
torque in the architecture having P4 motor. ( j =0D4, 14, 

24). As we can see in the table, 1u  determines the 

power distribution of motor which is located relatively 

far from the engine, 5u  determines the power 

distribution of the motor which is located relatively 
close to the engine. 

Table 3: Equation of Control Input 1u , 5u
Architectu

re 1u 5u

P2 tot,2m,2 /TT - 

P3 tot,3m,3 /TT - 

P4 tot,4m,4 /TT - 

P0D+P2 tot,0D2m,2 /TT tot,0D2m,0Dply /TT

P0D+P3 tot,0D3m,3 /TT tot,0D3m,0DplyTM /TT

P0D+P4 tot,0D4m,4 /TT tot_f,0D4m,0DplyTM /TT

P1+P2 tot,12m,2 /TT tot,12m,1/TT

P1+P3 tot,13m,3 /TT tot,13m,1TM /TT

P1+P4 tot,14m,4 /TT tot_f,14m,1TM /TT

P2+P4 tot,24m,4 /TT tot_f,24m,2TM /TT

3u , 4u  are defined like Equation (1), (2) respectively. 

In Equation (2), Decoupler open means the case that 
mechanical auxiliary load is separated from an engine, 
and Decoupler close means the case that mechanical 
auxiliary load is connected to an engine. 












)(Downshift1

shift)(No0

(Upshift)1

u3       (1) 






close)(Decoupler0

open)(Decoupler1
u4    (2) 

The range and grid of each control input are like Table 
4. 

Table 4: Range and Grid of Control Input 

Control Input Range 
Grid 

points 
Unit 

1u -1 ~ 1 21 - 

2u 0 ~ 143,000 21 RPM 

3u -1 ~ 1 3 - 

4u 0 ~ 1 2 - 

5u -1 ~ 1 21 - 
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We define states as 48V battery SOC, an engine on/off 
state, and gear stage of transmission. The range and grid 
of each state are like Table 5. 

Table 5: Range and Grid of State 
Control Input Range Grid points 

SOC 0.3 ~ 0.9 21 
Engine On/Off 0 ~ 1 2 

Gear Stage 1 ~ 6 6 

3.3. Model function.m setting 
This section introduces the Model function.m for DP. 
As mentioned above, the model function in this paper is 
a vehicle model, and the model used in this study is 
basically the same as the model which was used in the 
study last year (Ji Y. and Park J. 2018). Therefore, in 
this paper, we only describe the values which are 
defined differently from the last year’s study depending 
on the exploration target hybrid system architecture. 
The values that are defined differently by architecture 
are vehicle total desired torque, motor torque, cost 
function.  

3.3.1. Total desired torque determination 
The vehicle model used in last year’s study is P0 
architecture. So, the vehicle total desired torque is 
calculated at the engine crankshaft. In this paper, we 
define the calculation location of vehicle total desired 
torque according to architecture, for the convenience of 
calculation, like Figure 3.  

Figure 3: Total Desired Torque Calculation 
Locations according to Hybrid Drive System 
Architecture 

The vehicle total desired torque according to 
architecture is calculated as Equation (3) ~ (9). We 
considered the efficiency of the transmission in a real 
simulation, but not present in this paper to simplify 

equation representation. In the equation below, e0T  is 

drive resistance torque of the engine, wpT  is load torque 

of the mechanical auxiliary load, im0,T ( i =2 for P2, 3 

for P3, 0D3 for P0D+P3, etc.) is the drive resistance 

torque of the motor, and fd  is the gear ratio of the

final drive gear. Here, e0T  and wpT  are calculated at 

the transmission input shaft. Therefore, for the 
architecture which calculates vehicle total desired 

torque at the transmission output shaft, we should 
calculate these values considering the transmission gear 

ratio. And since im0,T  is calculated at motor shaft, we 

should calculate the drive resistance torque of the motor 
considering the transmission gear ratio or motor 
location when calculating vehicle total desired torque. 

In the equation below, wp_diff,i_diff,m0,e0_diff TTT ,,  are 

drive resistance torque of the engine and motor 
considering the transmission gear ratio, mechanical 
auxiliary load torque considering the transmission gear 
ratio respectively. 

1. P2















1)(u
γγ

T
T

1)(u
γγ

T
TTT

T

1
fdTM

v
m0,2

1
fdTM

v
m0,2wpe0

tot,2   (3) 

2. P3, P4 ( 43,k  )






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3. P0D+P2
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4. P0D+P3, P0D+P4 ( 43,k  )
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(6) 

5. P1+P2




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6. P1+P3, P1+P4 ( 43,k  )


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7. P2+P4
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 (9) 

3.3.2. Motor torque determination by 1u  (First 

motor) 
Table 6 shows the motor of which torque is determined 

by control input 1u , according to the architecture, and 

we let say this motor as the first motor from now on. 
The torque of the motor is calculated as Equation (10). 

In the Equation (10), im,T  is the torque of the motor of 

which torque is determined by 1u  for each architecture, 

and ktotT ,  is the vehicle total desired torque for each 

architecture. 

Table 6:  The Motor of which Torque is determined 

by Control Input 1u  

Architecture Architecture 
P2 P2 P0D+P4 P4 
P3 P3 P1+P2 P2 
P4 P4 P1+P3 P3 

P0D+P2 P2 P1+P4 P4 
P0D+P3 P3 P2+P4 P4 

ktotim, TuT ,1  ( 0D3,.....2,3,4,0D2,k2,3,4,i  )  (10) 

3.3.3. Motor torque determination by 5u (Second 

motor) 
Table 7 shows the motor of which torque is determined 

by control input 5u , according to the architecture, and 

we let say this motor as the second motor from now on. 

Table 7:  The Motor of which Torque is determined 

by Control Input 5u  

Architecture Architecture 
P0D+P2 

P0D 
P1+P2 

P1 
P0D+P3 P1+P3 
P0D+P4 P1+P4 

P2+P4 

If the case of 1u1  , since the vehicle is propelled by

the first motor only, the second motor doesn’t generate 
any torque. Therefore, the second motor torque is 

determined differently by 1u . And in the case of P0D 

motor, the torque of the motor is differed by decoupler 
state. With consideration of these characteristics, the 
motor torque is determined like Equation (11) ~ (16), 

according to the architecture. In Equation (13), effC  is 

the efficiency of delivered driving power, and trans
has the value between 0 and 1. This is the parameter for 
reflecting power distribution characteristic when motors 
are located at both front and rear wheel. For example, 
when the motors of the front and rear wheel all propel 
the vehicle or all brake the vehicle, each drive power is 
delivered to ground directly. But when the motor of 
front wheel propels the vehicle and the motor of rear 
wheel generate power using front wheel power, the 
front wheel power is delivered rear wheel motor 
through the ground. So, in that case, we should consider 
the efficiency of the delivered drive power. For 

reflecting these characteristics, we use effC  when 

architecture has a P4 motor. 
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2. P0D+P3
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3. P0D+P4
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4. P1+P2
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6. P1+P4, P2+P4
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3.3.4. Cost 
The dpm.m function sum the all cost per step to 
determine the optimal path. In this paper, the cost is 
defined by performance index differently. 

The cost for fuel economy and additional performance 
index, electric auxiliary load assist ability is fuel 
consumption per step time like Equation (17). Therefore, 
The DP for fuel economy and electric auxiliary assist 
ability will find the optimal path which minimizes fuel 
consumption.  

The cost for drive power reserve is like Equation (18). 

In the equation, fuelΔm  is fuel consumption per step 

time, pwrk  is the coefficient for drive power reserve, 

emaxe, PP ,  are the engine maximum power and current 

power respectively, e , SC-e  are the speed of the 

engine and 48V electric supercharger respectively, 

LHVH  is a low-heating value of fuel, sT  is step time. 

And we can see that the second term of Equation (18) 
has the same unit with fuel consumption. By this term, 
the engine drive power reserve (The engine maximum 
power – current power) became larger, the cost became 
smaller. So, The DP for drive power reserve will find 
the optimal path which maximizes drive power reserve 
and minimizes fuel consumption. 

fuelΔmJ   (17) 

s
LHV

eSCeemaxe,
pwrfuel T

H

P)ω,(ωP
kΔmJ


    (18) 

4. DYNAMIC PROGRAMMING RESULT

4.1. Test scenario 
In order to compare performance for each architecture, 
we carry out DP simulation for FTP-75 which is one of 
the driving cycles that used for evaluating fuel economy 
of a hybrid electric vehicle generally. The speed profile 
reference of a vehicle is like Figure 4. 

Figure 4: The Speed Profile of FTP-75 Cycle 

4.2. Performance index 
In this paper, we evaluate hybrid drive system 
architecture through fuel economy, electric auxiliary 
load assist ability, and drive power reserve. The index 
for evaluating each performance is calculated like 
below respectively. 

4.2.1. Fuel economy 
We calculate fuel economy like Equation (19) that 
calculate fuel economy by the total fuel consumption 
versus total travel distance of the vehicle. In this case, 
the cost of Model function.m is Equation (17). In the 
Equation (19), FE  is fuel economy of the vehicle, 
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totDist  is total travel distance of the vehicle when 

driving FTP-75 cycle, baseF  is total fuel consumption 

when we use cost as Equation (17). 


 fuelbase

fuel

tot ΔmF
Δm

Dist
EF ,  (19) 

4.2.2. Electric auxiliary load assist ability 
performance index 

For the case of electric auxiliary load assist ability, the 
cost of the Model function.m is Equation (17) as the 
case of fuel economy also. We evaluate the electric 
auxiliary load assist ability by fuel consumption 
difference between when an additional electric auxiliary 
load is applied and when is not applied. If the difference 
is not large, we can say that the architecture has high 
electric auxiliary load assist ability because it has a low 
reduction of fuel economy by an additional electric 
auxiliary load.  

In order to compare performance according to an 
additional electric auxiliary load size, we apply two 
kinds of additional loads, 300[W] and 1000[W].  The 
electric auxiliary load assist ability is defined as 

Equation (20). In Equation (20), baseFE,F  is the fuel 

consumption when an additional electric auxiliary load 

is not applied, accelecFE,F  is the fuel consumption when 

an additional electric auxiliary load, addelec,P , is applied 

by 300[W] or 1000[W]. 

1000)or300P(@ΔmF

0)P(@ΔmF

FFF

addelec,fuelaccelecFE,

addelec,fuelbaseFE,

baseFE,accelecFE,accelec,










 (20) 

4.2.3. Drive power reserve performance index 
We evaluate the performance of the drive power reserve 
as the total summation of drive power reserve per step 
time when we set the cost of Model function.m as 
Equation (18). In other words, the drive power reserve 

performance rsvpwrF ,  is defined as Equation (21). 




 
s

LHV

eSCeemaxe,
rsvpwr T

H

P)ω,(ωP
F ,  (21) 

4.2.4. Comprehensive performance index 
We defined the performance of electric auxiliary load 
assist ability and drive power reserve as Equation (20), 
(21). We defined each performance index as the concept 
of fuel consumption, and the reason for this is to solve 
the scaling problem when calculating the 
comprehensive performance index. The comprehensive 
performance index ( totalF ) that integrates all 

performance index which is described earlier is 

Equation (22). In Equation (22), 0α , 1α , and 2α  are 

the weight of each performance index respectively, and 
a user can adjust the weight when deriving optimal 
hybrid system architecture, according to what 
performance is more important. For example, If a user 
wants the optimal architecture which has higher electric 
auxiliary load assist ability than fuel economy and the 
drive power reserve, the user can set the weight as 

0.1α0  , 1α1  , 0.1α2  . Each weight has a 

positive value. 

rsvpwr,2accelec,1base0total FαFαFαF        (22) 

4.3. Comparison of fuel economy 
The fuel economy results for each architecture obtained 
by DP simulation (FTP-75) is like Figure 5. In this case, 
we set the cost of Model function.m as Equation (17). 
We can see P2 architecture have the best fuel economy. 
The reason for this may be that the motor of P2 
architecture can operate at a higher efficiency operating 
point than other architecture by optimizing the gear 
stage. And for all architectures, we can see that they 
have higher fuel economy when a 48V electric 
supercharger is applied. Therefore, we can conclude 
that the optimal architecture for fuel economy is P2 
with e-SC (48V electric supercharger) architecture. 

Figure 5: Comparison of FE
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4.4. Comparison of electric accessory load assist 
ability 

The electric auxiliary load assist ability for each 
architecture obtained by DP simulation (FTP-75) is like 
Figure 6, 7. In this case, we set the cost of Model 
function.m as Equation (17) and apply additional 
electric auxiliary load. Figure 6 and 7 are the case when 
an additional electric auxiliary load is 300[W] and 
1000[W] respectively. The electric auxiliary load assist 
ability performance index has a low value when the 
electric auxiliary load assist ability is high. For both 
cases that additional electric auxiliary loads are 300[W] 
and 1000[W] respectively, we can see that the P0D+P2 
with e-SC architecture has the best electric auxiliary 
load assist ability. Therefore, we can conclude that the 
optimal architecture for the electric auxiliary load assist 
ability is P0D+P2 with e-SC architecture. 

Figure 6: Comparison of accelec,F  ( 300P addelec,  ) 

Figure 7: Comparison of accelec,F  ( 1000P addelec,  ) 

4.5. Comparison of drive power reserve 
The drive power reserve for each architecture obtained 
by DP simulation (FTP-75) is like Figure 8. In this case, 
we set the cost of Model function.m as Equation (18). 
The drive power reserve performance index has a high 
value when the drive power reserve is high. So, we can 
see that the P0D+P2 without e-SC architecture has the 

best drive power reserve. Therefore, we can conclude 
that the optimal architecture for the drive power reserve 
is P0D+P2 without e-SC architecture. 

Figure 8: Comparison of rsvpwrF ,

4.6. Comparison of Comprehensive Performance 
Index 

The comprehensive performance index is differed by 

weight value, 0α , 1α , 2α . In this paper, we show one 

examples by setting 0α , 1α , 2α to 1 all. In other words, 

the optimal architecture derived from these weight 
values will be the architecture that has proper fuel 
economy, electric auxiliary load assist ability and drive 
power reserve. We calculate the comprehensive 
performance index for each architecture using 
performance indices which are calculated in previous 
sections, and the results are like Figure 9, 10. For both 
cases of additional electric auxiliary load are 300[W] 
and 1000[W] respectively, we can see that the P0D+P2 
without e-SC architecture has the lowest comprehensive 
performance index. Therefore, we can conclude that the 
optimal architecture for the comprehensive performance 
index is P0D+P2 without e-SC architecture. 

Figure 9: Comparison of totalF  ( 300P addelec,  ) 
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Figure 10: Comparison of totalF  ( 1000P addelec,  ) 

4.7. Ranking by Each Performance Index 
Table 8 and 9 are the ranking of the performance 
indices which are calculated in previous sections. The 
ranking is low when performance is high. In other 

words, FE , rsvpwrF ,  are ordered in which the 

performance indices are high, and addelec,P  are ordered 

in which the performance indices are low. 

In the case of fuel economy, we can see that the 
architectures having the P2 motor tend to have a high 
fuel economy. And In the case of the drive power 
reserve, we can see that the architecture having the 
motor connected directly to the engine crankshaft (P0D, 
P1) tend to have a high drive power reserve. In the case 
of the electric auxiliary load assist ability, we can't find 
a clear trend when an additional electric auxiliary load 
is 300[W]. But when an additional electric auxiliary 
load is 1000[W], we can see that the architecture having 
both P2 motor and the motor connected directly to the 
engine crankshaft tend to have a high electric auxiliary 
load assist ability. 

Therefore, taking above analysis together, we can 
conclude that we should select the P2 architecture when 
fuel economy is the most important, and select the 
architecture having crankshaft direct connection motor 
and P2 motor when electric auxiliary load assist ability 
or drive power reserve is most important. 

Table 8:  Ranking by FE  and rsvpwrF ,

Rank 
FE rsvpwrF ,

Architect
ure 

48V 
 e-SC 

Architect
ure 

48V 
 e-SC 

1 P2 O P0D+P2 - 
2 P2 - P0D+P2 O 
3 P2+P4 O P1+P2 - 
4 P1+P2 O P1+P2 O 
5 P2+P4 - P1+P3 - 
6 P1+P2 - P1+P3 O 
7 P0D+P2 O P1+P4 - 
8 P0D+P2 - P1+P4 O 
9 P3 O P3 - 
10 P4 O P0D+P3 - 
11 P3 - P0D+P4 - 
12 P0D+P3 O P0D+P4 O 
13 P4 - P0D+P3 O 
14 P0D+P4 O P2+P4 - 
15 P0D+P3 - P4 - 
16 P0D+P4 - P3 O 
17 P1+P3 O P2+P4 O 
18 P1+P4 O P4 O 
19 P1+P3 - P2 - 
20 P1+P4 - P2 O 

Table 9:  Ranking by addelec,P

Rank 

accelec,F

( 300P addelec,  ) 

accelec,F

( 1000P addelec,  ) 

Architect
ure 

48V 
 e-SC 

Architect
ure 

48V 
 e-SC 

1 P0D+P2 O P0D+P2 O 
2 P3 - P2 - 
3 P4 - P0D+P2 - 
4 P2 - P1+P2 - 
5 P0D+P2 - P1+P2 O 
6 P1+P2 - P2 O 
7 P0D+P3 O P4 O 
8 P1+P2 O P3 - 
9 P0D+P3 - P4 - 
10 P3 O P3 O 
11 P2 O P1+P4 O 
12 P4 O P1+P3 - 
13 P0D+P4 - P2+P4 O 
14 P0D+P4 O P1+P4 - 
15 P1+P3 O P0D+P3 O 
16 P1+P4 O P2+P4 - 
17 P1+P3 - P0D+P3 - 
18 P2+P4 O P1+P3 O 
19 P1+P4 - P0D+P4 O 
20 P2+P4 - P0D+P4 - 
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5. CONCLUSION
In this paper, we selected exploration target 48V hybrid 
drive architecture by exploring possible 48V hybrid 
drive system manually and compared the performance 
of each architecture through DP simulation. When 
comparing the performance of the hybrid system, we 
used not only fuel economy but also electric auxiliary 
load assist ability and drive power reserve. Here, we 
developed performance indices for electric auxiliary 
load assist ability and drive power reserve in order to 
compare performance. And the performance indices 
have a unit of fuel consumption in order to solve the 
problem scaling when calculating comprehensive 
performance index. As results, we found that P2 is the 
optimal architecture for fuel economy, and the 
architecture having crankshaft direct connection motor 
(P0D, P1) and P2 motor is the optimal architecture for 
electric auxiliary load assist ability or drive power 
reserve.  

We considered an engine only when calculating drive 
power reserve performance index. But a hybrid electric 
vehicle has not only an engine but also a motor for 
driving. Therefore, in future work, if we consider a 
drive power reserve of an engine and a motor together, 
the drive power reserve performance is expected to be 
evaluated more accurately. 
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