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ABSTRACT 

Intelligent Transportation System (ITS) is actively 

studied as the sensor and communication technology in 

the vehicle develops. The Intelligent Transportation 

System collects, processes, and provides information on 

the location, speed, and acceleration of the vehicles in 

the intersection. This paper proposes a fuel optimal 

route decision algorithm. The algorithm estimates 

traffic condition using information of vehicles acquired 

from several ITS intersections and determines the route 

that minimizes fuel consumption by reflecting the 

estimated traffic condition. Simplified fuel consumption 

models and road information (speed limit, average 

speed, etc.) are used to estimate the amount of fuel 

consumed when passing through the road. Dynamic 

Programming (DP) is used to determine the route that 

fuel consumption can be minimized. This algorithm has 

been verified in an intersection traffic model that 

reflects the actual traffic environment (Korea Daegu 

Technopolis) and the corresponding traffic model is 

modeled using AIMSUN. 

Keywords: Fuel Consumption, Traffic Information, 

Dynamic Programming(DP), Intelligent Transportation 

Systems(ITS), Advanced Interactive Microscopic 

Simulator for Urban and Non-Urban Networks 

(AIMSUN) 

1. INTRODUCTION

As the consumption of fossil fuels increases worldwide,  

environmental pollution becomes a more serious 

problem. The engine of an automobile burns fuel and 

exhaust many kinds of harmful gas. Typical automobile 

exhaust gas contains hydrocarbons (HC), nitrogen 

oxides (NOx), carbon monoxide (CO), carbon dioxide 

(CO2), and particle mass (PM). Automobile exhaust 

pollution has a detrimental effect on the human body 

and cause environmental changes such as global 

warming. Automobile emissions regulations are being 

strengthened to solve environmental problems caused 

by engine exhaust gas. Various technologies have been 

developed to improve fuel efficiency and satisfy 

environmental regulations. Engine control technologies 

such as ‘lean-burn’ and ‘engine downsizing’ have 

greatly increased engine efficiency, and component 

processing technology has significantly reduced power 

transmission losses. Eco-friendly vehicles using two or 

more distinct types of power (Fuel Cell Electric Vehicle, 

(Plug-in) Hybrid Electric Vehicle, etc.) are being 

actively developed and driving on the road. 

However, not only the automotive manufacturing / 

control technology but also the actual driving 

environment experienced by the driver is highly related 

to fuel economy and exhaust pollution. (Min Zhou 

2016) The actual driving environment includes the 

driving behavior of the driver, the traffic environment 

(queue length, speed limit, etc.), and the road 

environment (weather, traffic light, road curvature, etc.). 

Road information and traffic information are required to 

control the vehicle in accordance with the actual driving 

environment. The ITS has various measuring 

equipments (camera, radar, etc.) and communication 

systems (WAVE, 5G, etc.), so it can provide 

information such as traffic average speed and traffic 

signal schedule to the vehicles. There are many studies 

on how to reflect this information in the vehicle speed 

control algorithm and routing algorithm. (Hesham 

Rakha 2011; Matthew Barth 2011; Hao Yang 2016; Raj 

kishore Kamalanathsharma 2014; M.A.S. Kamal 2010; 

Matej 2016; Jie Sun 2015; Xian Huang 2018) These 

algorithms are very helpful in preventing traffic 

accidents and improving fuel economy. 

In this paper, we propose an algorithm to determine the 

route that can improve fuel economy by using road / 

traffic information delivered from ITS. First, the traffic 

flow model is used to estimate the state of traffic such 

as the average speed and the average travel time for 

each road. Second, simplified fuel consumption model 

is used to estimate instantaneous fuel consumption at 

vehicle speed and acceleration. The estimated 

instantaneous fuel consumption and road information 

are used to determine the amount of fuel consumed to 

pass the road. Instantaneous fuel consumption refers to 

the amount of fuel consumed in a steady state, ignoring 
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the transient state of the engine. It is assumed that the 

transient state of the engine is negligible because it is 

very small compared to the normal operating state. 

Third, the algorithm defines a cost function to minimize 

the amount of fuel consumed to pass the road and 

derives the optimal path using Dynamic Programming 

(DP). The DP algorithm is an algorithm for finding a 

globally optimal solution when the status of the entire 

system is known. The algorithm was programmed using 

Python and validated at the intersection AIMSUN 

traffic model reflecting the actual traffic environment 

(Korea Daegu Technopolis). AIMSUN is a software 

that can microscope the traffic environment and verify 

vehicle behavior in traffic flow. 

2. TRAFFIC STATE ESTIMATION MODEL

The traffic state estimation model estimates the ‘Travel 

Time’ and ‘Travel Fuel Consumption’. The traffic state 

estimation model uses average speed and traffic density 

based on Green-shield linear traffic model. The Green-

shield linear traffic model assumes that the traffic 

average speed and traffic density have a linear 

relationship. The relationship can be seen in Figure 1. 

Figure 1: The relationship between space mean 

velocity and traffic density 

2.1. Travel Time 

The ‘Travel Time’ means the time required to pass 

through each road. Travel time( TravelT ) can be 

estimated using ‘space mean speed( meanspaceV _ )’, 

‘speed limit( itVlim )’ and ‘road length( roadL )’. The 

equations for the travel time are (1). 
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Space mean speed is closely related to fuel consumption. 

The relationship can be seen in Figure 2. It can be seen 

that the fuel consumption according to the average 

speed increases in a specific section. This means that 

the engine efficiency in not good in the corresponding 

speed section. Even if fuel consumption is minimized, 

excessive travel time is not a reasonable solution. 

Therefore, travel time can be applied as a constraint on 

the cost function. 

Figure 2: The relationship between space mean 

velocity and fuel consumption 

2.2. Travel Fuel Consumption 

The ‘Travel Fuel Consumption’ means the fuel 

consumption required to pass through each road. Travel 

fuel consumption( travelFC ) can be estimated using 

‘instantaneous fuel consumption rate( instFR )’ and 

‘travel time( travelT )’. The equations for the travel time 

are (2). 

travelinsttravel TFRFC  (2) 

The instantaneous fuel consumption rate is the fuel 

consumption rate, which is determined only by the 

current state, assuming a steady state, and is determined 

by the longitudinal vehicle dynamics and the simplified 

fuel consumption rate model. The instantaneous fuel 

consumption rate is calculated by the simplified fuel 

consumption rate model. (Engin Ozatay 2013; Hesham 

Rakha 2011) Actual engines have nonlinear fuel 

consumption characteristics. It appears to be an overly 

complex formula and requires a long computation time. 

Simplified fuel consumption rate model cannot 

calculate accurate fuel consumption, but they can 

represent fuel consumption trends and have simple 

formulas and short computing times. As a result, a 

simplified fuel consumption rate model can be used to 

find the trends to minimize fuel consumption. The 

equations for the constructed model are (3). 
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The fuel consumption model is related to longitudinal 

vehicle dynamics. The longitudinal vehicle dynamics 

can be seen in Figure 3 and the equation is (4) - (6). 

Table 1 shows the vehicle parameter. 
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Figure 3: Longitudinal Vehicle Dynamics 
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Table 1: Vehicle Dynamics Parameters 

Vehicle Mass - M  ][kg  1202 

Frontal Area - fA  ][ 2m  2.7 

Air Drag Coefficient - dC  ][  0.3 

Air Density - ρ  ]/[ 3mkg  1.206 

A longitudinal vehicle dynamics model and a simplified 

fuel consumption model were verified using Carsim. 

Carsim is software that is primarily used to simulate the 

dynamic behavior of a vehicle. The verification result is 

the same as Figure 4 and Figure 5. In the graph, the blue 

line represents the nonlinear model and the red line 

represents the simplified model. The tendency of the 

simplified fuel consumption rate model is the same as 

the tendency of the non-linear fuel consumption rate 

model. 

Figure 4: Vehicle velocity estimation result for FTP-

75 city cycle  

Figure 5: Instantaneous fuel consumption estimation 

result for FTP-75 city cycle 

3. FUEL-OPTIMAL PATH FINDING 

ALGORITHM

The Fuel optimal routing algorithm uses dynamic 

programming to derive a path that minimizes fuel 

consumption.  

3.1. Dynamic Programming 

Dynamic programming, designed by Richard Bellman, 

is an analysis technique used to find global optimization 

solutions for complex systems. Dynamic programming 

divides a complex optimization problem into several 

simple sub-problems and derives the optimal solution of 

the complex problem by solving the sub-problems. In 

order to apply dynamic programming, a value function 

is designed for the purpose. 

3.2. Cost Function 

This algorithm aims at minimizing fuel consumption 

and reaching the destination. Depending on the purpose, 

the cost function( functionCost _ ) is designed to 

minimize fuel consumption( travelFC ). That is, the path 

that can minimize the total fuel consumption from the 

departure time( 0T )  to the arrival time( fT ) at the 

destination is determined. The formula for the cost 

function is (7). 


f

o

t

t

travel dtFCfunctionCost _ (7) 

The weighted graph of the road is determined by the 

cost function and is shown in Figure 6. The weight 

graph consists of nodes and sections, nodes represent 

intersections, and sections represent roads. Weights are 

assigned to each section. Each node is assigned an ID 

corresponding to an intersection. 

Unlike other path finding algorithms that minimize 

travel time or travel distance, the route is determined by 

comparing the fuel consumption of the entire route.  
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Figure 6: Weighted graph for actual intersections 

4. SIMULATION & RESULT

4.1. Simulation Environment 

The Fuel - optimal path finding algorithm is 

implemented using Python. The algorithm was verified 

by an intersection traffic model reflecting the actual 

urban traffic environment. The intersection traffic 

model was designed using AIMSUN. AIMSUN is a 

microscopic traffic simulation software, which can 

simulate traffic flow through the movement of 

individual vehicles. AIMSUN worked with Python 

2.7.13 to control the vehicles in the intersection traffic 

model. 

The modeling target is 19 intersections located in 

Technopolis, Daegu, Korea. In order to simulate actual 

traffic environment, road characteristics (traffic signal 

schedule, road shape) and traffic characteristics were 

reflected in urban intersection traffic model. The urban 

intersection traffic model is the same as Figure 7. The 

traffic signal schedule configuration is shown in Figure 

8. Figure 9 shows the traffic simulation screen using

AIMSUN. 

To verify this algorithm, we compare the simulation 

result with the shortest path finding algorithm to 

minimize travel distance. The performance of the 

algorithm was verified by comparing fuel consumption. 

Figure 7: AIMSUN urban intersection traffic model 

Figure 8: AIMSUN traffic model - traffic signal 

schedule 

Figure 9: AIMSUN Traffic simulation screen 

4.2. Simulation Result 

The simulation results are shown in Figure 10. 200 

vehicles of the total 4000 vehicles were controlled. The 

verification vehicle starts from node 24 and arrives at 

node 3. We simulated the saturation traffic situation of 

commuting time.  

The red path represents the shortest path and the yellow 

represents the Fuel-optimal path finding algorithm. 

Table 2 shows the simulation result. The shortest path 

finding algorithm consumes 74 liters of fuel with an 

average travel time of 2148 seconds and the fuel-

optimal routing algorithm consumes 68 liters of fuel 

with an average delay of 2250 seconds. As a result, it 

was confirmed that the fuel-optimal path finding 

algorithm improved the fuel efficiency of the controlled 

vehicle by approximately 9.04%. Although the fuel-

optimal path finding algorithm has a longer travel time, 

it can be seen that the fuel consumption is lower. 

Figure 10: Simulation results - path comparison 
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Table 2: Simulation results 

Shortest path finding algorithm 

Fuel Consumption 74.86 [L] 

Average Travel Time 2148.0 [sec] 

Fuel-optimal path finding algorithm 

Fuel Consumption 68.09 [L] 

Average Travel Time 2250.4 [sec] 

5. CONCLUSION

In this paper, we propose an algorithm to find the path 

that minimizes fuel consumption. The algorithm uses 

traffic information and vehicle information. The 

average travel time is estimated using traffic 

information. The instantaneous fuel rate is calculated 

using simplified fuel consumption model and vehicle 

status. The instantaneous fuel rate and average travel 

time are used to calculate travel fuel consumption, 

which is the amount of fuel consumed in passing 

through the road. The cost function is designed using 

the travel fuel consumption and the weight of each road 

is given. Dynamic Programming is used to find a path 

that minimizes the corresponding cost function over the 

entire travel period. To verify the algorithm, we 

modeled intersection traffic model for 19 actual traffic 

environment of 19 actual intersections of Daegu 

Technopolis, Seoul, Korea. Micro traffic simulation 

software AIMSUN was used as a traffic modeling 

environment. A total of 4,000 cars were used to 

construct traffic, of which 200 vehicles controlled the 

route. We compared the fuel consumption of the 

vehicles with the shortest path finding algorithm and the 

fuel optimal path finding algorithm respectively. It was 

confirmed that the fuel-optimal path finding algorithm 

uses 9% less fuel and 100 seconds longer travel time. It 

can be seen from this result that reducing the travel time 

or travel distance is not the only wat to reduce fuel 

consumption. 
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