Integration of process mining techniques in simulation results analysis

  • Irīna Šitova  , 
  • b Jeļena Pečerska  
  • ab Riga Technical University, Latvia
Cite as
Šitova I., Pečerska J. (2019). Integration of process mining techniques in simulation results analysis. Proceedings of the 18th International Conference on Modelling and Applied Simulation (MAS 2019), pp. 55-63. DOI:https://doi.org/10.46354/i3m.2019.mas.008
 Download PDF

Abstract

The research is carried out in the area of analysis of simulation results. The aim of this research is to explore the applicability of process mining techniques, and to introduce the process mining techniques integration into results analysis of discrete-event system simulations. As soon as the dynamic discrete-event system simulation (DESS) is based on events list or calendar, most of simulators provide the events lists. These events lists are interpreted as event logs in this research, and are used for process mining. The information from the events list is analysed to extract process-related information and perform in-depth process analysis. Event log analysis verified applicability of the proposed approach. Based on the results of this research, it can be concluded that process mining techniques in simulation results analysis provide a possibility to reveal new knowledge about the performance of the system, and to find the parameter values providing the advisable performance.

References

  1. Banks J., Carson J.S., Nelson B.L., Nicol D., 2010. Discrete-event System Simulation, 5th ed. Upper Saddle River, NJ. USA: Prentice Hall.
  2. Brady T. F., Bowden R. A., 2001. The effectiveness of generic optimization routines in computer
    simulation languages. Proceedings of the 2001 Industrial Engineering Research Conference. Dallas, Texas.
  3. Brady T. F., Yelling E., 2005. Simulation data mining: A new form of computer simulation output. Proceedings of the 2005 Winter Simulation Conference, pp. 285–289.
    https://doi.org/10.1109/WSC.2005.1574262.
  4. Dunham M., 2003. Data Mining: Introductory and Advanced Topics. Pearson Education, Inc. ISBN-13: 9780130888921.
  5. Cassandras C. G., Lafortune S., 2008. Introduction to Discrete Event Systems, Second edition., Boston, MA, USA: Springer. https://doi.org/10.1007/978-0-387-68612-7.
  6. Feldkamp N., Bergmann S., Strassburger S., 2015. Knowledge Discovery in Manufacturing Simulations, Proceedings of the 3rd ACM SIGSIM Conference on Principles of Advanced Discrete Simulation.
    https://doi.org/10.1145/2769458.2769468.
  7. Feldkamp N., Bergmann S., Strassburger S., Schulze T., 2016. Knowledge discovery in simulation data: A case study of a gold mining facility. Proceedings of the 2016 Winter Simulation Conference.
    https://doi.org/10.1109/WSC.2016.7822210.
  8. Haav H.-M., Kalja A., 2014. Business Process Mining in Warehouses: a Case Study. Proc. of the 11th International Baltic Conference, Baltic DB&IS 204. Tallinn: Tallinn University of Technology Press, 387−394.
  9. Han J., Kamber M., 2006. Data Mining: Concepts and Techniques, Second Edition, San Francisco, CA, USA: Elsevier Inc.
  10. Khemiri, A., Hamri, M. A., Frydman, C., Pinaton, J. Improving business process in semiconductor
    manufacturing by discovering business rules, Proceedings of the 2018 Winter Simulation
    Conference, pp. 3441-3448.
    https://doi.org/10.1109/WSC.2018.8632509.
  11. Kibira D., Hatim Q., Kumara S., et al., 2015. Integrating data analytics and simulation methods
    to support manufacturing decision making. Proceedings of the 2015 Winter Simulation Conference.
    https://doi.org/10.1109/WSC.2015.7408324.
  12. Law A.M. and Kelton W., 2000. Simulation modeling and analysis. 3nd ed. Mc Graw Hill Higher
    Education.
  13. Martin N., Depaire B., Caris A., 2018. A synthesized method for conducting a business process
    simulation study. Proceedings of the 2018 Winter Simulation Conference. 
    276-290.10.1109/WSC.2018.8632298.
  14. Merkurjevs J., Pečerska J., Tolujevs J., 2008. Simulation-Based Analysis of Logistic Systems,
    Humanities and Social Sciences. Latvia, vol. 4, no. 57, pp. 27–48.
  15. Nakatumba J. and van der Aalst W. M. P., 2009. Analyzing Resource Behavior Using Process
    Mining. In Business Process Management Workshops, volume 43 of Lecture Notes in Business Information Processing, pages 69–80. Springer. ISBN 978-3-642-12185-2.
  16. Painter M. K., Erraguntla M., Beachkofski B., et al., 2006. Using simulation, data mining, and
    knowledge discovery techniques for optimized aircraft engine fleet management. Proceedings of the 2006 Winter Simulation Conference.
    https://doi.org/10.1109/WSC.2006.323221.
  17. Pidd M., 2004. Systems Modelling: Theory and Practice. Chichester: John Wiley & Sons Ltd.
  18. Robinson S., 2015. A tutorial on conceptual modeling for simulation, Proceedings of the 2015 Winter Simulation Conference.
    https://doi.org/10.1109/WSC.2015.7408298.
  19. Šitova I., Pečerska J., 2018, Approach to Integration of Data Mining Techniques in Simulation Results Analysis. Information Technology and Management Science. vol. 21, pp. 86–92.
    https://doi.org/10.7250/itms-2018-0014.
  20. Šitova I., Pečerska J., 2017. A concept of simulationbased SC performance analysis using SCOR
    metrics, Information Technology and Management Science. vol. 20, pp. 85–90.
    https://doi.org/10.1515/itms-2017-0015.
  21. Schriber T. J., Brunner D. T., Smith J. S. Inside discrete-event simulation software: how it works
    and why it matters. Proceedings of the 2014 Winter Simulation Conference.
    https://doi.org/10.1109/WSC.2014.7019884.
  22. Tax N., Sidorova N., Haakma R., van der Aalst W. M. P., 2018. Mining Process Model Descriptions of Daily Life through Event Abstraction In: Bi Y., Kapoor S., Bhatia R. (eds) Intelligent Systems and Applications. IntelliSys 2016. Studies in Computational Intelligence, vol 751. Springer, Cham. https://doi.org/10.1007/978-3-319-69266-1_5.
  23. van der Aalst W. M. P., 2011. Process Mining - Discovery, Conformance and Enhancement of
    Business Processes. Springer.
    https://doi.org/10.1007/978-3-642-19345-3.
  24. van der Aalst W. M. P., 2012. Process Mining: Overview and Opportunities. ACM Trans.
    Management Inf. Syst., 3(2):7.
    https://doi.org/10.1145/2229156.2229157.
  25. van der Aalst W. M. P, 2016. Process Mining: Data Science in Action. Springer.
    https://doi.org/10.1007/978-3-662-49851-4.
  26. vWitten I. H., Frank E., 2005. Data Mining: Practical Machine Learning Tools and Techniques, Second Edition, San Francisco, CA, USA: Elsevier Inc.