
 

 

 

 

ABSTRACT 
Naval Supply Systems Command Weapon Systems 
Support (NAVSUP WSS) serves as the Navy’s 
inventory control point, managing approximately 
375,000 line items. Constrained by funding, NAVSUP 
WSS uses the Wholesale Inventory Optimization Model 
(WIOM) to maximize customer service. Since demand 
distributions for different parts change over time, 
NAVSUP WSS reruns WIOM quarterly. However, 
large changes to the solution create an administrative 
burden. To deal with this problem, referred to as churn, 
WIOM has a persistence parameter that can discourage 
change from one run to the next, but it is inherently at 
odds with customer service performance. This research 
develops the Comparative Optimized Results 
Simulation to explore the system’s performance under 
different persistence settings and periodicities of 
running WIOM. The research finds that periodicities 
greater than quarterly significantly degrade customer 
service, and increasing the persistence parameter 
dramatically improves churn while only marginally 
degrading customer service. 

Keywords: inventory management; discrete event 
simulation; wholesale inventory optimization model 

1. INTRODUCTION
Naval Supply Systems Command, Weapon Systems 
Support (NAVSUP WSS) serves as the main inventory 
control point for the Navy. The command manages over 
375,000 unique line items (NAVSUP 2018) used in the 
repair of ships, submarines, Navy and Marine Corps 
aircraft, and associated weapons systems. The effective 
management of this supply chain is essential in 
maintaining readiness of the fleet to operate and 
conduct combat operations around the world. 
Like any organization, NAVSUP WSS has a limited set 
of resources with which to conduct its operations. The 
biggest constraint is financial. Given limited budgetary 
means, NAVSUP WSS strives to maximize support to 
the warfighter. The predominant metric used to measure 
customer support is fill rate. When NAVSUP WSS 
receives a requisition, one of two things can happen. 
Either the requisition is filled immediately with stock 

on hand, or the requisition is backordered. The fill rate 
metric shows the relationship between the number of 
requisitions filled immediately on receipt and the 
number of requisitions that are backordered. Fill rate is 
defined mathematically as follows: 
  Fill rate = Requisitions Filled / Requisitions Received. 
For example, if 50 requisitions were received in a given 
period, and 43 of them were filled immediately and 7 
were backordered, then a fill rate of 86% was achieved 
for this period. The above calculation can be applied to 
a specific item or to a group of items. When it is applied 
to a group of items, it can be done in one of two ways. 
First, the fill rate can be calculated as an average of all 
the individual item fill rates. Or, the fill rate can be 
calculated with the above equation without regard to 
what the particular item is. This is also called demand 
weighting, because it is equivalent to a weighted 
average of item fill rates, weighted according to the 
demands of the individual items. In this study, we use 
demand weighted fill rate unless specifically noted 
otherwise.  
In the past NAVSUP WSS used commercially-
developed optimization software to maximize their 
achieved fill rate given their budget constraints. 
Developed by MCA Solutions, the Service Planning 
and Optimization (SPO) was effective but had 
shortcomings. First, it was a “black box” to the users at 
NAVSUP WSS, who did not have access to the models 
and algorithms SPO used to develop its solutions. SPO 
did not have the ability to accept budget as a constraint. 
Therefore, NAVSUP WSS had to run SPO iteratively, 
adjusting a fill rate constraint until a satisfactory budget 
figure was reached. Additionally, SPO was expensive, 
costing around $800,000 per year in licensing fees. In 
order to replace SPO with a better-functioning 
optimization tool at reduced cost, Naval Postgraduate 
School faculty developed the Wholesale Inventory 
Optimization Model (WIOM) (Salmeron and Craparo 
2017). WIOM is a mixed-integer linear program 
designed to maximize a function closely related to fill 
rate, for the wholesale inventory managed by NAVSUP 
WSS. Roth (2016) used simulation modeling to 
conclude that WIOM 3.51 was in fact superior to SPO 
in maximizing fill rates. NAVSUP WSS sunset SPO 
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and began using WIOM in April of 2017. While WIOM 
performs well compared to SPO, NAVSUP WSS 
identified further features they would like to be 
incorporated into WIOM. First, WIOM 3.51 did not use 
demand weighting. Instead, it had two settings that 
could be used. First, WIOM could treat each National 
Item Identification Number (NIIN) equally. This is not 
desirable because it ignores the relative importance of 
NIINs with high demand. Alternatively, WIOM could 
give preferential treatment to NIINs that were assigned 
to specific groups called level setting strategy indicators 
(LSSIs). By assigning high-demand NIINs to a certain 
LSSI and then assigning that LSSI a high weight, 
NAVSUP WSS could mitigate the demand weighting 
issue. Additionally, NAVSUP WSS could use a series 
of business rules to create low-demand cutoff points, 
choosing to leave very low demand NIINs out of the 
optimization altogether. In order to address this 
concern, WIOM was revised to use demand weighting, 
and incorporated this change into the WIOM 4.1 
release.  
NAVSUP WSS has an additional concern with WIOM 
(and SPO before it): churn. Churn is the change 
between solutions from one model run to the next. 
NAVSUP WSS runs the optimization model once every 
quarter. In the three months between model runs, the 
number of requisitions received changes the demand 
parameters that feed into WIOM. Subsequently, the 
optimization problems are quite different and 
considerably differing solutions are possible. Indeed, if 
multiple optimal (or near-optimal) solutions exist, churn 
may occur even in the absence of changes to the input 
data. Churn creates an administrative burden in 
contracting and can reduce senior leadership’s 
confidence in optimization efforts. To deal with the 
problem, Salmeron and Craparo (2017) included a term 
in WIOM’s objective function that calculates a churn 
penalty. This term contains two penalty parameters. 
One is indexed by NIIN, allowing the user to adjust the 
relative importance of each NIIN within the churn term. 
The other is a global persistence parameter that reflects 
the overall importance of the churn term. This study 
focuses on the global persistence parameter; for 
simplicity we use the term “persistence parameter” 
hereafter. The persistence parameter rewards a solution 
for maintaining legacy values from one model run to the 
next. The parameter is not an on/off switch; rather, it is 
a continuous parameter that can be set from zero to an 
arbitrarily large number. At zero, the persistence 
parameter is “off.” As the parameter increases, the 
model more strongly prefers to retain incumbent 
solutions. Additionally, there is an inherent tradeoff 
between churn reduction and achieved fill rate. The 
higher the persistence parameter, the less important fill 
rate becomes in the objective function.  This paper 
explores this tradeoff via discrete event simulation 
following work by Teter (2018).   
The remainder of the paper is organized as follows: 
Section 2 presents a literature review of related 
inventory models, to include optimization and 

simulation methods. Section 3 describes the 
methodology goals, data and an introduction to the 
simulation metamodel. Section 4 explores the effects of 
periodicity and persistence settings on fill rate. Finally, 
our conclusions are presented in Section 5.  

2. LITERATURE REVIEW

2.1. Inventory Management 
Wholesale inventory management is concerned with 
finding strategies to meet demand requirements from 
customers at an acceptable service level and an 
acceptable cost level. Many different models have been 
proposed, but the two we will discuss are the order-
point, order-quantity (s,Q) model and the classic 
inventory model. 
Order-point, order-quantity models are discussed in 
Silver et al. (1998). In an (s,Q) system, two parameters 
are used to make decisions on stock replenishment. The 
first is the reorder point, s. As an item’s stock level 
decreases, a reorder is triggered once the item’s 
inventory position decreases to the level of the reorder 
point. Inventory position is defined as the quantity on 
hand plus the quantity on order minus the quantity in a 
backordered status (i.e., owed to customers). The 
second parameter is the order quantity Q. This is the 
quantity of material ordered every time there is a 
reorder. When a reorder is placed, the time it takes for 
this order to arrive is known as the lead time. A key 
feature of an (s,Q) system is that each reorder is 
triggered by a low inventory position, not low inventory 
on hand. This prevents the system from placing extra 
orders when there is already an order due-in that will 
replenish stock sufficiently. Silver et al. provide an 
analogy: “A good example of ordering on the basis of 
inventory position is the way a person takes aspirin to 
relieve a headache. After taking two aspirin, it is not 
necessary to take two more every five minutes until the 
headache goes away. Rather, it is understood that the 
relief is ‘on order’— aspirin operates with a delay” 
(Silver et al. 1998). 
WIOM uses the (s,Q) system to model NAVSUP 
WSS’s wholesale inventory. However, NAVSUP WSS 
only determines reorder points. The quantity of the 
reorders is decided by Navy Enterprise Resource 
Planning (ERP), and is treated as input by NAVSUP 
WSS, who then strives to maximize effectiveness by 
deciding on appropriate reorder points. 
A special case of the (s,Q) system is the classical 
inventory model discussed in Tersine (1994). The 
classical inventory model uses an (s,Q) system but with 
a very rigid set of assumptions. Among other things that 
are not relevant to our purposes, the classical inventory 
model assumes the following: deterministic and 
constant demand; constant deterministic lead time; 
reorders arrive as a whole lot of size Q; and backorders 
are not allowed, since constant demand and lead time 
allow backorders to be avoided with certainty.  The 
resulting system creates a characteristic saw-tooth 
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pattern. This inventory model is used primarily as a 
means to estimate an order quantity that minimizes cost, 
known as the economic order quantity (Silver et al. 149-
197). Since NAVSUP WSS treats the order quantity as 
a given input from ERP, we are not concerned with that 
aspect of the model. However, the model has some 
unique qualities that we will use when establishing 
initial conditions for our simulation. Specifically, a 
result of the model is that the average amount of 
inventory on hand is equal to Q/2. Furthermore, the 
inventory on hand at any given time is distributed 
uniformly from zero to Q. 
Bachman et al. (2016) combine discrete event 
simulation with optimization for inventory models to 
manage items with demand that is either infrequent or 
highly variable.  Simulation-based optimization is also 
proposed by Köchel and Nieländer (2005) to define 
optimal inventory policies in multi-echelon systems. 

2.2. Discrete Event Simulation 
Discrete event simulation is addressed in detail in Law 
(2015). Discrete event simulations are those that 
advance time from one discrete event to the next. These 
events may change the state of the system being 
represented, and the system cannot change during the 
time between events. Law presents several concepts to 
understand such a simulation: System state; Simulation 
Clock; Event List; and, Initialization Routine. 
We develop a simulation using this next-event time 
advance principle. Events in the system are arranged in 
time in an event list. The simulated time moves forward 
from one event to the next according to the events’ 
arrangement in time. The current event is evaluated, 
state changes to the system are made as necessary, and 
the simulation moves to the next event in time while the 
simulation clock is updated. 

2.3. Previous WIOM Simulation Study 
Roth (2016) conducted a comparative simulation study 
between three different optimization methods: simple 
calculation (a heuristic), SPO, and WIOM. Using a 
discrete event simulation and testing across five types of 
material, Roth concluded that WIOM was the best 
performing of these three alternatives. However, Roth’s 
simulation relies on several strong assumptions: 

• NIIN demand probability distributions are
known and unchanging through time;

• NIIN demands arrive in quantities of one only;

• Demands are uncorrelated between NIINs.

In addition to these assumptions, the simulation models 
a lengthy warm-up period of 400,000 days to reach 
steady state. Due to these assumptions and warm-up 
period, Roth’s simulation would be ineffective to try to 
model short-term performance of the system with 
frequent WIOM runs and changes in estimated demand 
distributions every quarter. 

 3. METHODOLOGY

3.1. Goals 
The work creates a discrete event simulation that uses 
historical requisitions as input and requires no warm-up 
period. We call this simulation the Comparative 
Optimized Results Simulation (CORS). By using 
historical data and not requiring a warm-up period, 
CORS allows for multiple runs of WIOM during the 
test period. We conduct a series of experiments using 
the simulation and analyzes the output in order to gain 
insight into: (a) the relative tradeoff between churn and 
fill rate using differing settings for the persistence 
parameter, and (b) the effect of WIOM periodicity on 
fill rate. 
In practice, NAVSUP WSS has historically used a set 
of business rules to help it overcome limitations in SPO. 
These business rules include mandating minimum and 
maximum reorder points for some NIINs, which restrict 
the range of solutions that SPO can use. 
Additionally, WIOM accounts for churn by use of the 
persistence parameter and accounts for low demand 
items by using demand weighting. Therefore, no 
additional business rules will be used in this study. 
While exploring differing concepts of operations for 
NAVSUP WSS, we do not explore all possible 
periodicities. Running WIOM and implementing its 
solution is administratively burdensome, and 
organizationally NAVSUP WSS wants to maintain a 
normal battle rhythm (Ellis et al. 2017). For this reason, 
we assume that WIOM can only be run quarterly, 
semiannually, or annually. 
Our work is limited to non-nuclear consumable 
material. Modeling repairable material is more complex 
and not addressed in this study.  
CORS does not attempt to model all aspects of 
inventory management. Therefore, while the model 
delivers insight into performance, it only does so 
relatively. We are only comparing between simulations 
and claiming which operating condition performed 
better. 
Using deterministic demand gives great flexibility to 
explore the effects of different concepts of operations 
that a long term steady state simulation does not. 
However, by using deterministic demand we are 
essentially restricted to one data point and a trace 
simulation. Thus, our conclusions are inherently 
limited. We can say that one concept of operations 
performed better than another in the simulation, but 
only for the given set of demands.  

 3.2. Data 
The set of data provided includes historical requisitions. 
The data are a record of all demands that NAVSUP 
WSS received during 2013 through 2017. The next set 
of data provided consists of historical candidates files. 
These files contain information for all the NIINs that 
were input into SPO for each quarter. Also provided are 
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historical wholesale data files (Ellis 2017). These files 
have the majority of the data elements needed to run in 
WIOM, but they do not include the budget category, 
which is necessary to classify a NIIN as a particular 
type of material.  After excluding repairable and nuclear 
items, and items with inconsistent requisition data, our 
dataset contains approximately 3,800 maritime NIINs 
and over 100,000 requisitions. 

3.3. Metamodel 
As input, CORS requires requisition data and WIOM 
outputs for each quarter of the time period being tested. 
To obtain the necessary WIOM outputs, we start by 
running WIOM for the first quarter in the time period. 
This run uses the candidates file for the first time period 
developed above, the budget figure, and the persistence 
parameter we are exploring. The second WIOM run for 
the next sequential quarter requires all the same input 
data plus the first WIOM solution, as it uses this 
information to enforce persistence. The third WIOM run 
requires the second WIOM solution, etc. After repeating 
the process for all available quarters we have a library 
of WIOM output. This WIOM output contains both the 
optimal reorder points (ROPs) and the NIIN 
characteristics CORS requires; namely, each NIIN’s 
lead time (LT) and order quantity (Q). This library of 18 
WIOM outputs is fed into CORS, along with the 
requisition data. CORS then performs its simulation and 
outputs system performance in terms of fill rate. Figure 
1 illustrates the process.  

Figure 1: Metamodel Relationships 

Simulating one NIIN at a time, CORS maintains an 
event queue with events aligned in time to trigger 
demand arrivals, order arrivals, and parameter changes 
due to new WIOM input. Each event triggers a 
particular logic sequence that examines the current state 
of the system and makes appropriate changes to the 
system and event queue. The simulation tracks the 
following system characteristics (state variables):  

Order Quantity (Q) 
Reorder Point (ROP) 
Lead Time (LT) 
Quantity On-Hand (Q_O/H) 
Inventory Position (IP) 
Time (t) 

CORS output information that can be used to calculate 
fill rate in a variety of ways. First, the model outputs the 

overall fill rate for each NIIN for the entire simulation. 
Next the model outputs aggregate data for all NIINs that 
can be used to calculate the fill rates for a number of 
time frames. For each month, the total number of 
requisitions filled (across all NIINs) and the total 
number of requisitions received are both recorded. With 
these data, aggregate demand weighted fill rates can be 
calculated for any periodicity that is a multiple of 
months (i.e., quarterly, annually, etc.). Finally, the 
model outputs the average length all backordered 
requisitions stayed in a backorder status. 
We implement the simulation logic in the R 
programming language (R Core Team 2016) to run 
CORS. A formal representation of the model, as well as 
additional logic to record statistics of system 
performance, appear in Teter (2018). 

4. ANALYSIS

4.1. Operating Concepts Explored 
We have two items we wish to explore: run periodicity 
and the persistence parameter. We only consider 
periodicities of quarterly, semi-annually, and annually. 
For the persistence parameter, we choose to use 
parameters that roughly correlate to none (0.0), low 
(0.1), medium (1.0), and high (5.0).  
Additionally, we explore the possibility of a hybrid 
approach, where WIOM is run every quarter, but with 
different persistence parameters. In this hybrid idea, 
persistence is turned off in one model run per year in 
order for the solution to “reset” and adapt to any drift 
that has occurred in the demand distributions. The other 
three quarters the persistence parameter is set at the low, 
medium, or high level. Thus, the total number of 
concepts tested in our experiments is 15. 

4.2. Effect of Periodicity in Fill Rate 
 Table 1 shows the list of settings for the 15 designs and 
the resulting “overall” (average over all NIINs) fill rates 
achieved under each design, as simulated in CORS. 
Note that WIOM does not directly maximize fill rate; 
rather, it minimizes a nonlinear penalty associated 
under-achieving fill rate goals. Nonetheless, overall fill 
rate provides a simple aggregate figure of merit by 
which to judge system performance. The results indicate 
clear differences in fill rate achievement between 
periodicities, with the greatest difference between 
Annual and Quarterly designs (close to 10%). 
Differences between persistence levels (within the same 
periodicity) are almost negligible, noting that higher 
levels have the desired effect of significantly reducing 
churn (to be shown later).  
An interesting question is when the overall simulated 
fill rates start to diverge under different periodicities. 
For example, in the case of designs 4 and 9, the overall 
difference of about 10% does not occur until month 20 
(see Figure 2). In our design comparisons, divergence 
takes even longer to take place. Based on what we see 
here, we expect at least two quarters before any impact 
of a WIOM implementation is experienced. This makes 
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intuitive sense as the average lead time across the NIINs 
tested is a little more than a year. 

Table 1: Overall Fill Rates by Design 
Design Periodicity Persistence Overall fill 

rate 
1 

Annual 
0.0 51.77% 

2 0.1 51.88% 
3 1.0 51.85% 
4 5.0 51.74% 
5 

Semi-annual 
0.0 58.34% 

6 0.1 58.08% 
7 1.0 58.45% 
8 5.0 58.01% 
9 

Quarterly 
0.0 61.57% 

10 0.1 61.16% 
11 1.0 61.43% 
12 5.0 60.90% 
13 

Annual, then 
Quarterly 

0.0, then 0.1 61.53% 
14 0.0, then 1.0 61.46% 
15 0.0, then 5.0 61.32% 

Figure 2: Monthly Differences in Simulated Overall Fill 
Rates between Designs 4 and 9 

4.3. Effect of Persistence Level 
The persistence parameter does not directly set a certain 
level of churn. Rather, it is a change in the weighting of 
the objective function for the WIOM optimization 
model. So, we must first analyze the effect of the 
persistence parameter on churn, and then analyze the 
effect on fill rate performance.  
It is important to note here that we are comparing churn, 
which is calculated in WIOM, against simulated fill rate 
performance, which is not calculated exactly: The 
optimization uses a closed-form approximation 
amenable to calculations. The simulation calculates it 
more accurately, as shown by Roth (2016). The purpose 
here is not to compare the relative values of the two 
terms in WIOM’s objective function. Rather, our goal is 
to compare churn against simulated system 
performance. Having shown that annual and semi-

annual concepts perform poorly, we restrict the 
persistence analysis to quarterly periodicities only.  

4.3.1. Persistence Level on Churn 
The persistence parameter in WIOM enforces 
persistence by applying a penalty when the safety stock 
of a NIIN differs from the previous safety stock level. 
The safety stock is the expected quantity on hand when 
an order arrives. The penalty (Total Churn) can be 
defined by the following expression: 

0

0

ˆ
: ˆ 1

i i

i I i

S S
Total Churn

S∈

−
=

+
∑

where I is the set of all NIINs, 0ˆ
iS  is the safety stock of 

NIIN i in the incumbent solution, and is iS is the new 
(optimized) safety stock.  
We note the churn penalty for a single item i is 
proportional to the relative magnitude of the change. 
For example, a change of solution from 9 to 10 incurs a 
penalty of 0.1, while a change from 9 to 19 incurs a 
penalty of 1.0. To compare the churn across our 
quarterly designs, we compute Total Churn for every 
quarter, and take the mean value across the simulation 
time period for each concept of operation design. The 
results of these calculations are shown in Table 2. 

Table 2: Total Churn by Quarterly Design 

Design Persistence Total Churn 

9 0.0 5,673 

10 0.1 600 

11 1.0 154 

12 5.0 50 

The designs using a constant persistence parameter 
every quarter show a clear reduction in churn with 
increasing persistence parameter. The highest 
persistence parameter tested has, on average, less than 
1% the churn present with the parameter set to 0.0.  
Next, we look at hybrid concept designs, 13, 14, and 15, 
separating average churn rates when the persistence 
parameter is equal to zero and when it is not (Table 3). 

Table 3: Total Churn for Hybrid Designs 

Design Persistence Average 
with zero 

persistence 

Average 
with positive 
persistence 

Overall 

13 0.0, then 0.1 8,816 572 2,512 

14 0.0, then 1.0 9,391 155 2,328 

15 0.0, then 5.0 8,925 49 2,137 
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We make two observations. First, in the quarters when 
persistence above 0.0 is used, average churn for designs 
13, 14, and 15 is very similar to average churn for 
designs 10, 11, and 12, respectively (see Table 2). The 
next observation is that the large overall average churn 
for the hybrid designs comes from the annual runs with 
persistence set to 0.0. In these designs churn is very 
high during the annual “reset” of the WIOM solution 
but effectively reduced during other quarters.  
The above analysis shows that the persistence parameter 
reduces churn. However, this definition of churn is 
abstract and mathematical, and there is no immediate 
understanding of what its values mean to the system. 
An alternate way to express churn that is more intuitive 
is to define it as the proportion of NIINs that had any 
change in safety stock. While WIOM does not use this 
definition (nor does it pursue such a goal in the 
objective function), we expect this measurement to 
decrease in concert with WIOM’s definition of churn, 
and we wish to know if it does not. Using this alternate 
definition of churn as a proportion, we calculate the 
average across the simulation period for the different 
designs in Table 4. As expected, increasing the 
persistence parameter reduces the proportion of NIINs 
that have a change in safety stock. However, the 
reduction is less dramatic than that reflected in the 
churn formula. The churn formula calculated churn at 
persistence parameter level 5.0 as less than 1% of the 
churn at persistence parameter 0.0. Using this alternate 
definition, the fraction of items with any churn is 
reduced by about 75% when the persistence parameter 
is increased from 0.0 to 5.0. 
 
Table 4: Churn Redefined as % of Items with Change 

Design Persistence Average items with churn 

9 0.0 39.99% 

10 0.1 30.72% 

11 1.0 16.12% 

12 5.0 10.35% 

13 0.0, then 0.1 36.73% 

14 0.0, then 1.0 27.34% 

15 0.0, then 5.0 23.10% 
 

Table 5: Churn as Change in Absolute Dollar Value 
Design Persistence Average churn ($ million) 

9 0.0 6.29 

10 0.1 4.68 

11 1.0 2.83 

12 5.0 1.95 

13 0.0, then 0.1 5.49 

14 0.0, then 1.0 4.55 

15 0.0, then 5.0 4.08 

A third way to define churn is by dollar value. For any 
given NIIN, we can define a change in the stock cost as 
the absolute value of the change in the solution times 
the unit cost of that NIIN. This dollar value is 
sometimes referred to as “execution cost.” As before, 
this is a value of interest to the analyst but not one that 
WIOM pursues by design. Tables 5 shows the results, 
and we observe similar behavior as in the two previous 
definitions for churn. 

 

4.3.2. Churn versus Fill Rate 
One of the fundamental questions of this study is the 
trade-off between churn and fill rate performance.  For 
this analysis we use WIOM’s original calculation of 
churn. We start by looking at the relationship between 
churn value and fill rate for our seven quarterly designs. 
A graph of these points is presented in Figure 3. 
However, it is important to note that we are graphing 
the simulated fill rates achieved over the time period. 
We are not attempting to find the Pareto curve of 
efficient solutions, which would be applicable to the 
two components of the objective value calculated by 
WIOM. Rather, we are trying to get an idea of the trade-
off of between fill rate performance and churn achieved 
in a production-type environment. 

 
Figure 3: Fill Rate by Churn Value 

 

It appears that there is a very slight increase 
(improvement) in fill rate associated with an increase 
(degradation) in churn, which is what we expect. But, 
we have few data points and the increase is very slight. 
Reductions (improvement) in churn are very “cheap” in 
terms of fill rate for these levels of persistence 
parameter for this set of historical demand. 

 

4.4. Additional Persistence Exploration 
Based on the results of the quarterly concepts from our 
original experimental design, we observe only a small 
trade-off relationship between churn value and 
simulated fill rate. However, we know that at some 
level a larger trade-off exists. The annual and semi-
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annual designs effectively have churn-free solutions in 
the quarters that WIOM is not run. These designs have 
clear degradation in fill rate compared to the quarterly 
designs. Therefore, there must be some threshold of 
churn improvement that causes greater levels of 
simulated fill rate degradation. However, the persistence 
parameters we explored did not create churn reduction 
that crossed that threshold. We therefore conduct a new 
experiment with higher settings of the persistence 
parameter to find this threshold and find a steeper trade-
off between churn and fill rate. 
We add three new concepts of operation to our 
experiment. We use quarterly runs with the persistence 
parameter set at 10, 100, and 1000. For this analysis we 
exclude the hybrid designs. Our results show that 
increasing the persistence parameter above 5.0 only 
marginally decreases churn, and increasing it over 10.0 
has a negligible effect. This is shown by a clear “knee” 
in the curve shown in Figure 4. 

Figure 4: Extended Testing of Churn 

As the increase in persistence parameter has little effect 
on churn, it also has little effect on fill rate performance, 
which remains fairly constant around 60%. 

5. CONCLUSIONS
This work develops a simulation model, CORS, in order 
to explore the effects of different concepts of operation 
for wholesale inventory optimization. These concepts of 
operation vary in terms of the periodicity that WIOM is 
executed and the persistence parameter used. We 
explore a variety of different concepts of operations 
using CORS and we measure system performance for 
each design in terms of simulated fill rate and churn. 
Through the course of this research we have gained 
several key insights into NAVSUP WSS’s wholesale 
inventory system. The first insight is that it takes time 
for different implementation concepts to differentiate in 
terms of fill rate. Even very clearly different solutions 
take at least six months to produce different fill rates. It 
takes even longer for the magnitude of the difference to 
become clear. This insight is important because it 
reminds us to be cautious in judging the performance of 
the system in the short term. 

Our next key insight into the system is that WIOM 
solutions have a short shelf life. The system changes 
sufficiently over time that there are clear degradation to 
fill rate performance for semi-annual designs and 
dramatic degradation for annual designs. While 
different solutions take time to diverge, it is important 
for the optimization model to be able to adjust to 
changes in the underlying demand structure quickly. We 
see no reason to recommend a change to the quarterly 
periodicity that NAVSUP WSS currently uses. 
Perhaps our most important finding is that, for the 
historical demand considered, churn can be drastically 
reduced without sacrificing system performance in 
terms of fill rate. By implementing the use of the 
persistence parameter, NAVSUP WSS can gain 
significant improvement in churn, which reduces 
administrative burden in contracting and improves the 
ability to explain WIOM results to senior leadership. 
All this improvement can be gained without sacrificing 
fill rate performance and support to the fleet.  
Our final finding is somewhat unexpected: It appears 
that WIOM has a limit to how far it can enforce 
persistence. Beyond a certain point, increasing the 
persistence parameter has no practical effect on churn. 
Even increasing the persistence parameter several 
orders of magnitude has virtually no effect on churn. 
This may be due to side constraints on WIOM reorder 
points preventing them to match legacy values. It could 
also be due to WIOM’s budget constraint: If the 
incumbent solution is too costly for the current budget, 
the lowest feasible value of churn will be strictly 
positive.  
The results found by this study became one input that 
led to the decision of maintaining the current periodicity 
by which NAVSUP WSS sets quarterly inventory 
levels. 
It is also important to discuss what we did not find. Our 
first important caveat concerns the lack of reduction in 
fill rate with increases in the persistence parameter. In 
this particular case, we observed that the limit that 
persistence could be enforced was above the critical 
threshold where it would impact simulated fill rates. In 
this way, we could increase the persistence parameter to 
an arbitrarily large number and not affect fill rates. 
However, we do not have evidence that this is true 
generally. It may well be that this is simply a 
coincidence of this particular type of material, for these 
demands, and at this budget level. 
The next important caveat is that our conclusions are 
based on only 4.5 years of data. We showed that 
simulated fill rates did not degrade with increases in the 
persistence parameter for this time period only. We also 
showed that the difference between a good and bad 
concept of operations takes time to develop. It is 
possible that some level of persistence does impact 
long-term fill rates when viewed from a longer term 
horizon. 
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