Internet of Things and industrial automation approach application for beekeeping processes automation

  • Anatolijs Zabasta  , 
  • b Nadezda Kunicina  , 
  • c Kaspars Kondratjevs  , 
  • d Leonids Ribickis  
  •  
  • abcd The Institute of Electrical Engineering and Electronics, EEF, The Riga Technical University, Latvia
Cite as
Zabasta A., Kunicina N., Kondratjevs K., Ribickis L. (2019). Internet of Things and industrial automation approach application for beekeeping processes automation. Proceedings of the 18th InternationalConference on Modelling and Applied Simulation (MAS 2019), pp. 127-136. DOI: https://doi.org/10.46354/i3m.2019.mas.017
 Download PDF

Abstract

In this paper we discuss the Internet of Things (IoT) and industrial systems automation approach application for development a prototype of an autonomous beekeeping system. In this research we focus on one of the Arrowhead Framework core systems named the Event Handler system. MQTT service broker being a part of autonomous beekeeping system demonstrates the services provided by the Event Handler System. The proposed services broker applies a visual data flow programming approach. A Node-RED is used to prove viability and advantages of offered architecture implemented in a local automation cloud of autonomous beekeeping System of Systems. The autonomous beekeeping system’ prototype provides useful data on beehives and bee apiary status (internal and ambient temperature, humidity, weight of the hives, etc.) to the system users, so they can evaluate the hive status and take further action.

References

  1. Albano M., Ferreira L. L., and Sousa J., 2016. Extending publish/subscribe mechanisms to SOA
    applications. 2016 IEEE World Conference on Factory Communication Systems (WFCS), P. 1-4.
  2. Alps I., Gorobecs M., Beinarovica A., Levcenkovs A., 2016. Immune Algorithm and Intelligent Devices for Schedule Overlap Prevention in Electric Transport. No: 2016 57th International Scientific Conference on Power and Electrical Engineering of
    Riga Technical University (RTUCON), Latvia, Riga, 13.-14. October, 2016. Riga: IEEE, 2016, pp.
    1-7.
  3. Altun A. A. 2012. Remote Control of the Temperature- Humidity and Climate in the Beehives with Solar Powered Thermoelectric System, J. Control Eng. Appl. Informatics, vol. 14, no. 1, pp. 93–99, 2012.
  4. Alessandrelli D., Petraccay M., and Pagano P., 2013. TRes: Enabling reconfigurable in-network
    processing in IoT-based WSNs. In Proceedings -IEEE International Conference on Distributed
    Computing in Sensor Systems, DCoSS 2013, pages 337-344.
  5. Blackstock M., and Lea R., 2012. WoTKit: a lightweight toolkit for the web of things, in Proceedings of the Third International Workshop on the Web of Things. ACM, 2012, p. 3.
  6. Blackstock, M. and Lea, R. 2014. Toward a Distributed Data Flow Platform for the Web of Things
    (Distributed Node-RED). Proceedings of the 5th International Workshop on Web of Things (New York, NY, USA, 2014), pp. 34–39.
  7. Blockly, 2019. Google Blockly Homepage:https://developers.google.com/blockly/. [Accessed:
    March 2019].
  8. Blomstedt, F., Ferreira, L., Klisics, M., Chrysoulas, C., de Soria, I., Zabašta, A., Moris, B., Eliasson, E.
    Johansson M., Varga P., 2014. The Arrowhead Approach for SOA Application Development and
    Documentation. In: Proceeding 40th Annual Conference of the IEEE Industrial Electronics
    Society (IECON 2014), United States of America, Dallas, 29 Oct-1 Nov., 2014. Dallas: The Institute of Electrical and Electronics Engineers (IEEE), 2014, pp.2637-2637.
  9. Delsing J., ed., 2016. IoT based Automation - made possible by Arrowhead Framework. CRC Press, Taylor & Francis Group.
  10. Delsing J., 2017. Local Cloud Internet of Things Automation: Technology and Business Model
    Features of Distributed Internet of Things Automation Solutions 2017 In: IEEE Industrial
    Electronics Magazine, Vol. 11, no 4, p. 8-21 Article in journal (Refereed).
  11. Eugster P. T., et al, 2003. Felber P., Guerraoui R., Kermarrec A-M., 2003. The Many Faces of
    Publish/Subscribe, ACM Computing Surveys 35(2), 2003, pp. 114-131
  12. Giang N., Lea R., Blackstock M., Leung V.C. M., 2016. On Building Smart City IoT Applications: a
    Coordination-based Perspective, in Proceeding SmartCities ’16, December 12-16, 2016, Trento,
    Italy pages 1-6.
  13. Gross H-G., 2005. Component-Based Software Testing with UML, Springer-Verlag Berlin Heidelberg, ISBN 3-540-26733-6.
  14. HiveMQ, 2015. MQTT Essentials Part 6: Quality of Service 0, 1 & 2, Written by The HiveMQ Team, published: February 16, 2015, [accessed in April 2019].
  15. ISO 2016. MQTT 3.1.1 Specifications. International Organization for Standardization, ISO/IEC 20922. https://www.iso.org/standard/69466.html. [Accessed: April 2019].
  16. ITAPIC, 2016. The Application of Information Technologies in Precision Apiculture (ITApic)
    ERA-NET ICT-Agri Project, http://www.itapic.eu/index.php [accessed in April 2019].
  17. Karnouskos S. et al., 2010. Karnouskos S., Colombo A.W., Jammes F., Delsing J., Bangemann T., 2010 Towards an architecture for service-oriented process monitoring and control, in: 36th Annual Conference of the IEEE Industrial Electronics Society (IECON-2010), Phoenix.
  18. Kleinfeld, R. et al. 2014. Glue.Things: A Mashup Platform for Wiring the Internet of Things with the Internet of Services. Proceedings of the 5th International Workshop on Web of Things New York, NY, USA, 2014, pp.16–21.
  19. Kunickis M., Dandens A., Bariss U., 2015. Justification of the Utility of Introducing Smart Meters in Latvia. Latvian Journal of Physics and Technical Sciences. Volume 52, Issue 6, 1 December 2015, Pages 13-21.
  20. Lewis K., 2016. Node-RED visual programming for the Internet of Things (IoT) is now a JS Foundation Project. https://www.ibm.com/blogs/internet-ofthings/open-source-iot/ [Accessed in March 2019].
  21. Lindström J., Hermanson A., Blomstedt F., and Kyösti P., 2018. A Multi-Usable Cloud Service Platform: A Case Study on Improved Development Pace and Efficiency. In: Applied Sciences, 2018, 8(2), 316, Vol. 8, no 2, https://doi.org/10.3390/app8020316.
  22. Norris D., 2004. Communicating Complex Architectures with UML and the Rational ADS, In Proceedings of the IBM Rational Software Development User Conference.
  23. Maier M. W., 1998. Architecting Principles for Systemsof-Systems, In Systems Engineering, volume 1, issue 4: pp. 267-284.
  24. Newton R., Arvind, and Welsh M., 2005. Building up to macroprogramming: An intermediate language for sensor networks. In: 4th International Symposium on Information Processing in Sensor Networks, IPSN 2005, volume 2005, pages 37-44.
  25. NoFlo, 2019. Flow-Based Programming for JavaScript NoFlo: http://noflojs.org/. [Accessed: March 2019].
  26. OASIS Standard, 2014. MQTT Version 3.1.1, http://docs.oasisopen.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf. [Accessed: March 2019].
  27. OMG, 2005. OMG Model Driven Architecture, [Online]. Available from: http://www.omg.org/mda [Accessed: February, 2019].
  28. Open Energy Monitor, Open source monitoring for understanding energy,
    https://openenergymonitor.org/ [Accessed in March 2018].
  29. Pereira et al, 2014. Pereira, Punal P., Jens Eliasson J., and Delsing J. An authentication and access control framework for CoAP-based Internet of Things. In Industrial Electronics Society, IECON 2014-40th Annual Conference of the IEEE, pp. 5293-5299. IEEE, 2014.
  30. Shelby Z, Hartke K., and Bormann C., 2014. The constrained application protocol (CoAP), RFC
    7252 (Proposed Standard), Jun. 2014.
  31. Sultanovs E., Skorobogatjko A., and Romanovs A., 2016. Centralized Healthcare Cyber-Physical
    System’s Architecture Development. In: Proceedings of the 2016 57th International Scientific Conference on Power and Electrical Engineering of Riga Technical University, Latvia, Riga, 13-14 October, 2016. Riga: RTU Press, 2016, pp.153-158.
  32. Varga P., Blomstedt F., Ferreira L. L., Eliasson J., Johansson M., Delsing J, and de Soria I. M., 2016. Making system of systems interoperable— The core components of the Arrowhead Framework, J. Network Computer Appl., vol. 81, pp. 85–95, Mar.2016.
  33. Zabasta A., Kuņicina N., Kondratjevs K., Patlins A., Ribickis L., Delsing J., 2018. MQTT Service
    Broker for Enabling the Interoperability of Smart City Systems”. International Conference on Energy and Sustainability in Small Developing Economies- ES2DE18. Funchal, Spain, 9 - 11 July 2018, pp.1-6.
  34. Zacepins A., V. Brusbardis V., Meitalovs J., and Stalidzans E., 2015. Challenges in the development of Precision Beekeeping, Biosyst. Eng., vol. 130, pp. 60–71, Feb. 2015.
  35. Zacepins A., Kviesis A., Pecka A., and Osadcuks V., 2017. Development of Internet of Things concept for Precision Beekeeping, Conference: 2017 18th International Carpathian Control Conference (ICCC), P.1-5.
  36. Zacepins A., Stalidzans E., and Meitalovs J., 2012. Application of information technologies in precision apiculture, in Proceedings of the 13th International Conference on Precision Agriculture (ICPA 2012), p.1-6.