

The Institute of Electrical Engineering and Electronics, EEF

The Riga Technical University, Riga, Latvia

Anatolijs.Zabasta@rtu.lv, Nadezda.Kunicina@rtu.lv, Kaspars.Kondratjevs@rtu.lv,

Leonids.Ribickis@rtu.lv

ABSTRACT

In this paper we discuss the Internet of Things (IoT) and

industrial systems automation approach application for

development a prototype of an autonomous beekeeping

system. In this research we focus on one of the

Arrowhead Framework core systems named the Event

Handler system. MQTT service broker being a part of

autonomous beekeeping system demonstrates the

services provided by the Event Handler System. The

proposed services broker applies a visual data flow

programming approach. A Node-RED is used to prove

viability and advantages of offered architecture

implemented in a local automation cloud of autonomous

beekeeping System of Systems. The autonomous

beekeeping system’ prototype provides useful data on

beehives and bee apiary status (internal and ambient

temperature, humidity, weight of the hives, etc.) to the

system users, so they can evaluate the hive status and

take further action.

Keywords: Internet of Things, Arrowhead, UML,

Wireless Sensor Networks, autonomous beekeeping.

1. INTRODUCTION

Beekeepers, who to engage intensive honey production,

have to reallocate bee apiaries several times pursuing

better conditions for harvesting of honey products by the

end of a summer season. Therefore, they need such

monitoring system that ensure monitoring of the hives

conditions remotely, e.g. whether the weight of a beehive

approaches to maximum, thus the harvesting must be

arrange, otherwise, honey production will be interrupted.

In winter time, a beekeeper wants to know, whether the

inside temperature is critical, if the family is missing

feed, to detect, and prevent dangerous deviations in time.

In our research we offer a solution that performs bee

apiary control without interfering with its processes,

which helps to optimize frequency of the apiary

inspection. The prototype helps to analyze monitoring

data in correlation with video, meteodata, weight

changes in time as well as interpretation of nest

temperature, humidity and linking to local ambient

conditions.

This research is implemented in a frame of the project

“Autonomous Beekeeping”, which is started at the

beginning of 2018. The project is funded by the European

Agricultural Fund for Rural Development Program

2014-2020 Cooperation: Support new products,

methods, processes and technologies.

The paper is structured as follows. The Chapter 2

provides a review of the literature devoted to application

of SOA for industrial systems automation and innovative

approaches for automation of beekeeping maintenance

processes. The model and composition of a prototype of

the autonomous beekeeping system is described in the

Chapter 3. Discussion about main discoveries and critical

issues is done in the Chapter 4. The review of main

contribution of the research and possible directions for

future works are discussed in the Chapter 5.

2. REVIEW OF THE LITERATURE

Several researches have been devoted to monitoring of

bee colonies. One of them is a project “The Application

of Information Technologies in Precision Apiculture”

(ITAPIC 2016), which proposed implementation of

precision agriculture technologies and methods in the

beekeeping. Zacepins, Stalidzans, and Meitalovs (2012)

defined the notion of precision beekeeping as an apiary

management strategy based on monitoring of individual

bee colonies to minimize the resource consumption and

maximize the productivity of bees. Altun (2012),

Zacepins et al. (2015) depicted a few examples of

approaches and solutions: temperature and humidity

controlling system, which is powered by solar energy.

IoT system prototype for honey bee colony temperature

monitoring is described by Zacepins, Kviesis, Pecka, and

Osadcuks (2017).

Striving to apply IoT and industrial automation

approaches to beekeeping monitoring processes

automation we developed a system, which is based on

Service Oriented Architecture (SOA) (Alessandrelli,

Petraccay, and Pagano 2013; Karnouskos S. et al. 2010),

in order to provide highly compatibility with existing and

emerging solutions. Gross (2005) developed a model

with the purpose of flexible composition and reuse of

software artifacts. The method uses UML (Norris 2004)

as primary model-based notation for analysis and design

Proc. of the Int. Conference on Modeling and Applied Simulation 2019,
ISBN 978-88-85741-29-4; Bruzzone, De Felice, Dias, Massei and Solis, Eds.

127

INTERNET OF THINGS AND INDUSTRIAL AUTOMATION APPROACH APPLICATION

 FOR BEEKEEPING PROCESSES AUTOMATION

Anatolijs Zabasta, Nadezda Kunicina, Kaspars Kondratjevs, Leonids Ribickis

DOI: https://doi.org/10.46354/i3m.2019.mas.017

mailto:Kaspars.Kondratjevs@rtu.lv

activities. The model applies a notation System or a

System-of-Systems (Maier M. W. 1998) as a component

that can interact with others through interfaces and can

be decomposed in other Systems or components.

Blomstedtet et al (2014) presented the first steps of

realizing the Arrowhead vision for interoperable

services, systems and systems-of-systems aiming to

support the documentation of their structural services.

Each service, system and system-of-systems within the

Arrowhead Framework must be documented and

described in such way that it can be implemented, tested

and deployed in an interoperable way. The research

(Varga 2016, Delsing 2017) goes beyond Blomstedtet et

al (2014), therefore, interoperability in-between almost

any service provided by heterogeneous systems are here

addressed by the core services that are necessary to meet

the requirements and enable a collaborative automation

cloud. Both papers present an overview of the framework

together with its core elements and provides guidelines

for the design and deployment of interoperable,

Arrowhead-compliant cooperative systems.

The local cloud concept developed by the Arrowhead

Framework (Delsing ed. 2016) addresses many

challenges related to IoT-based automation, and is

unique in its support for integration of applications

between secure localized clouds. The viability of

Arrowhead Framework has been demonstrated by

implementing of this approach in diverging fields of

industrial automation. The case study of small enterprise

(Lindström 2018) concerns a multi-usable cloud service

platform for big data collection and analytics.

A case study of the service broker, implemented for

control of utilities systems in urban environment, is

presented in (Zabasta et al. 2018). Arrowhead core Event

Handler service s created and tested as a MQTT enabled

service broker, for wiring together divergent hardware

devices and nodes, and APIs for online services.

A macro-programming model capable to oversee the

network of distributed sensors as a whole rather than to

program individual pieces is suggested by Newton,

Arvind, and Welsh (2005). Giang (2017) and Blackstock,

M. and Lea, R. (2014) offered an advanced version of

dataflow model to express application logic of IoT

devices suitable for large scale IoT, called as "Adaptive

Distributed Dataflow".

In our research we studied Data Flow Systems, which

provide a data flow-programming paradigm for IoT

applications. The WoTKit Processor (Blackstock, and

Lea 2012) provides the basic requirements for

lightweight toolkits: integration, visualization and

processing components and a RESTful API. NoFlo

(NoFlo 2019) is a flow based programming environment

for JavaScript. It is targeted to ease the development of

web applications. Like Node-RED, NoFlo provides a

visual editor for a data flow runtime leveraging Node.js.

Unlike FRED, NoFlo is not a cloud service; developers

install and deploy NoFlo themselves, on its own, or

embedded in an application. Glue.Things Composer

(Kleinfeld, R. et al. 2014) is designed to connect to other

components of the GlueThings platform: Device

Manager, and Deployment Manager. A mashup editor is

built on Node-RED. Blockly (Blockly 2019) is a client-

side JavaScript library for creating visual block

programming languages and editors. It is a project of

Google and is open-source under the Apache 2.0 License.

Since the IoT has been recognized as a promising

solution since in very divergent areas such as public

utility systems automation (Kunickis, Dandens, Bariss

2015), efficient transportation systems (Alps I. 2016)

centralized healthcare (Sultanovs, Skorobogatjko, and

Romanovs 2016), efficient waste management, smart

grids, digital tourism, etc., we tested it applicability in an

agriculture area, namely in the beekeeping.

In this research we focus on one of the Arrowhead

Framework core systems named the Event Handler

system. MQTT service broker being a part of

autonomous beekeeping system demonstrates the

services provided by the Event Handler System.

The proposed smart services broker applies a visual data

flow programming approach (Blackstock, and Lea,

2014). A Node-RED (Lewis 2016) was selected among

other tools to prove viability and advantages of offered

architecture implemented in a local automation cloud of

autonomous beekeeping System of Systems.

3. DEVELOPMENT OF THE MODEL OF THE

SYSTEM

3.1. Arrowhead Framework Approach for the

Autonomous beekeeping

For creation of Autonomous beekeeping system (AB

system), we applied the Arrowhead Framework approach

that supports the development of generic SOA systems.

The Arrowhead Framework (AF) acts as an enabler for

systems from different areas: industrial automation,

energy production, home automation, smart grids, etc. to

facilitate their interaction with each other and exchange

information. This multi-area approach can enable

considerable savings in terms of efficiency,

interoperability and maintenance cost. AF approach

promotes the different application systems in an easy and

flexible way being able to collaborate successfully due to

support provided by the common core services.

The Arrowhead Framework (AF) includes a set of Core

Services, which support the interaction between

Application Services (e.g. sensor readings, controlling of

actuating devices, energy consumption, temperature

measurement services, etc.). The Core Services handle

the support functionality within the AF to enable

application services to exchange information (see Fig.1).

The AF is built upon the local cloud concept, where local

automation tasks should be encapsulated and protected

from outside interference.

Each local cloud must contain at least the three

mandatory core systems: Discovery, Authorization and

Orchestration, which allow to establish connections

between Arrowhead application services (Delsing ed.

2016).

Proc. of the Int. Conference on Modeling and Applied Simulation 2019,
ISBN 978-88-85741-29-4; Bruzzone, De Felice, Dias, Massei and Solis, Eds.

128

Figure 1: Data exchange between a service producer

system and a service consumer system (Delsing 2015).

3.2. Event Handler System and its services

The core system, named as Event Handler System

(Albano, Ferreira, and Sousa 2016), belongs to the

automation supporting core systems. It provides

functionality for the handling of events that occur in an

Arrowhead network. The Event Handler System (EHS)

receives events from Event Producers and dispatches

them to registered Event Consumer. А notation “event”

could imply an application service, for example, data

provided by water flow sensor, or another event, such as

a log of the service failure in case, when EHS is used as

a part of the quality of service evaluation system.

There are scenarios, which require a stronger level of

decoupling, in terms of space, time and synchronization,

when Arrowhead Core Services are used to ensure

exchange of services between the systems.

Space decoupling means that a publisher and a subscriber

do not need to be aware of each other’s location or

identities. Time decoupling means that a publisher and a

subscriber do not need to be online and actively

collaborating in the interaction at the same time.

Synchronization decoupling allows asynchronous

notification of subscribers by using event services

callbacks.

For such scenarios Event Handler System acts as an

intermediary between the event producer and the event

consumer, providing asynchronous and one-to-many or

many-to-many communication model (Eugster et al.

2003). Filtering rules to incoming events could be

applied, based on the predefined criteria, for example, on

the subscription to the particular services provided by the

EHS. In such case, only events, which are interested for

Event Consumer, will be sent.

The Event Handler System provides three services – the

Registry Service, Publish Service and Notify Service.

The SOA approach is implementing due to operations

performed in the context of the of the Publish/Subscribe

paradigm (see Fig. 2).

The EHS Registry Service is provided in order to store

and keep track of the service consumers and service

producers in the System of System. If a consumer desires

to receive services, or a producer wants to publish

services, both need to be registered through this service.

At the registration time the producer should advertise the

kind of services it produces. The consumer has to specify

the filtering rules regarding incoming events by defining

a set of conditions to be applied to all incoming events,

to be routed to the subscriber.

The EHS Publish Service and Notify Service are used to

deliver data regarding the events. A producer system

accesses the Publish service of EHS to post the events it

produces. The EHS defines, which consumers must

receive the event, and then launches the Notify service to

provide the incoming event to a particular subscriber of

the service.

One of the functions implemented by the EHS is the

storage of information regarding events (services) for

future access. The storage of information could be

implemented locally at the data base of the Event

Handler System, or through a Historian Service, which is

one of the Arrowhead cores services used to store data

(Pereira et al. 2014). To perform this function, EHS

proceeds events and routs them on a storage area together

with information about a subscriber, which received this

event and its meta data. The EHS Get Historical Data

service applies filtering rules to permanently stored

events (in a database, log file or through the Historian)

and retrieves data regarding stored events.

When talking about Quality of Service (QoS) there are

always two different parts of delivering an event: a

publisher to EHS and a subscriber. It is worth to look at

them separately, since there are subtle differences. The

QoS level for a publisher to EHS is depending on the

QoS level the publisher sets for the particular message.

When the EHS transfers an event to a subscriber, it uses

the QoS of the subscription made by the subscriber

earlier. That means, the QoS guarantees can get

downgraded for a particular client, if it subscribed with a

lower QoS.

In work (HiveMQ 2015), three Quality of Service levels

in MQTT are depicted. Since in this research we

developed a MQTT service broker, it looks reasonable to

interpret QoS notation defined in (HiveMQ 2015) aiming

to depict QoS of the Event Handler System.

QoS 0 – at most once. The minimal level is zero and it

guarantees a best effort delivery. A message won’t be

acknowledged by the receiver or stored and redelivered

by the sender. This is often called “fire and forget” and

provides the same guarantee as the underlying TCP

protocol.

QoS 1 – at least once. When using QoS level 1, it is

guaranteed that a message will be delivered at least once

to the receiver. But the message can also be delivered

more than once. The sender will store the message until

it gets an acknowledgement from the receiver.

QoS 2. The highest QoS is 2, it guarantees that each

message is received only once by the counterpart. It is

the safest and also the slowest quality of service level.

The guarantee is provided by two flows there and back

between sender and receiver.

Proc. of the Int. Conference on Modeling and Applied Simulation 2019,
ISBN 978-88-85741-29-4; Bruzzone, De Felice, Dias, Massei and Solis, Eds.

129

Figure 2: Event Handler System interaction with the systems.

The Event Handler System can handle a variety of

communication protocols applied by IoT embedded

devices, such as MQTT (Message Queuing Telemetry

Transport) (OASIS Standard 2014; ISO 2016; Shelby,

Hartke, and Bormann 2014), Constrained Application

Protocol (CoAP) and REST (Representational state

transfer), and can decode commonly used semantics, e.g.

SenML (Sensor Markup Language), XML, JSON

(JavaScript Object Notation), and plain text. EHS should

be able to convert between protocols in a message

exchange between different users. For example, a device

can push data to the Event Handler System CoAP or

MQTT, while clients can either use MQTT, or poll data

using HTTP.

In our research we developed Event Handler System as a

service broker, which enables SOA based services and

data flow between divergent type of embedded devices

and nodes, for example: humidity, wind strength, weight,

outdoors and indoor temperature sensors, etc. The

implementation of EHS core system as a MQTT service

broker is depicted in the Chapter 3.5.

3.3. Autonomous beekeeping System functionality

and composition

The first prototype of the autonomous beekeeping (AB)

system was tested at five of bee hives allocated at the

Riga Botanic Garden during the summer 2018. The

weight of bee hives, humidity as well as the temperature

sensors, which measure the temperature inside of the

beehives and outside temperature, were tested (see

Fig.3).

Figure 3: A bock-scheme of autonomous beekeeping

system.

A communication system of AB System-of-Systems

comprises sensors-transmitters and gateway-

concentrators as the elements of wireless sensor network

(WSN). The sensors-transmitter consists of a

microcontroller, readout interface, power supply and

ISM band radio module operating at 868MHz.

Proc. of the Int. Conference on Modeling and Applied Simulation 2019,
ISBN 978-88-85741-29-4; Bruzzone, De Felice, Dias, Massei and Solis, Eds.

130

The data from the sensor-transmitter are transmitted to

the concentrator from sensors using ISM range signal

868 MHz (for example, weight sensor 1C3003AE0030

transmitted data via radio gateway-concentrator).

The transmission range of sensors-transmitters is up to

several hundred meters depending on the installation

environment. The measurement data are encapsulated in

telegrams to be transmitted using Manchester coding and

GFSK modulation to one or to multiple gateways that

provide an area of coverage.

The gateway node consists or a radio module, GSM

GPRS module. Additional or 802.11b/g/n Wi-Fi module

that integrates a microcontroller (ESP8266) is available.

The Wi-Fi module supports both station: Wi-Fi client

mode and access point modes.

A 4G reliable and secure LTE router with I/O, GNSS and

RS232/RS485 has been used for communication

between gateway-concentrator and MQTT broker at the

back-end. Router delivers mission-critical cellular

communication and GPS location capabilities.

3.4. The system UML model

In order to create a model of the autonomous beekeeping

system we use a methodology represented by OMG’s

(Object Management Group) solution for system

abstraction, modelling, development, and reuse—Model

Driven Architecture (MDA) (OMG 2005). The key

component of a system modelling, which underlies the

principles of MDA, is the Unified Modelling Language

(UML) a widely accepted standard for modelling and

designing different types of systems. In order to create

the UML model of AB system we apply Enterprise

Architect Professional modelling tool.

Figure 4: Use case diagram of AB system

Fifteen primary Use cases have been defined aiming to

describe AB model (see Fig.4). Among them are Collect

and visualize parameters, Measure beehive weight,

Measure beehive's internal temperature, Measure the

beehive's internal moisture, Monitor energy

consumption, etc. We use the actor symbol to represent

the agent that activates the use case, probably beekeeper

or the other AB system’ client, which is willing to

analyze the behavior of a bee colony.

Figure 5: Domain Objects diagram of autonomous

beekeeping system

A Domain Objects diagram at Fig. 5 shows nineteen

classes, where four of them represent different kinds of

sensors with its services components, four classes

represent power supply and energy storage, four classes

data storage processing and visualization services, two

classes data communication services, and etc. The

parameters of attributes and operations in classes have

been omitted in the interest of figure clarity.

Data processing and presentation system will be explored

and described in more details as a MQTT service broker

in the chapter 3.5.

3.5. Event Handler System implementation

We implemented Event Handler System as a MQTT

service broker that applies a software integration

platform Node-RED to interconnect heterogeneous

systems in IoT way. The service broker applies Message

Queuing Telemetry Transport (MQTT) protocol, which

is a Client Server subscribe messaging transport

protocol. It is lightweight, open, simple, and designed so

as to be easy to implement. These characteristics make it

suitable for constrained environments such as for

communication in Machine-to-Machine (M2M) and

Internet of Things (IoT) contexts.

The beehive monitoring system deployed a Node-RED

(Lewis 2016) as a gateway concentrator for wiring

together hardware devices (temperature, weight,

humidity sensors, etc.), APIs and online services. At the

heart of Node-RED is a visual editor allowing complex

data flows to be wired together with a little coding skills.

Node-RED main functionality is to decode and to route

MQTT smart metering data to further service

orchestration or use them in external services as

monitoring system or external clients (see Fig. 3 and 6).

class Domain Objects

Domena modelis ir visu objektu apskats, kas veido interesejošo jomu, un
to attiecibas. To izmanto, lai attelotu butiskus objektus Autonomas
biškopibas sistema. Domena modelis ir visu objektu apskats, kas veido
interesejošo jomu un to attiecibas. To izmanto, lai attelotu butiskus
objektus Autonomas biškopibas sistema. Savukart domena klases modelis
uzrada svarigu informaciju par domena objektiem.

Autonomous
beekeeping system
(System-of-Systems,

SoS)

+ Description: String
+ Name: String

Sensors (Smart meters)

+ dataType: String
+ installationAddress: String
+ MACaddress: int
+ SerialNumber: int
+ Type: String

Video signal transmitters

+ connectionWay: String
+ dataType: String
+ installationAddress: String
+ MACaddress: Integer
+ serialNumber: Integer

Communication system

+ equipmentName: String
+ equipmentTipe: String
+ frequency: Integer
+ installationAdress: String

Data processing and
presentation system

+ accessToData: String
+ InstallationAdress: String
+ systemOwner: String
+ systemResponsible: String

Electric power supply system

+ equipmentName: String
+ equipmentType: String
+ installationAddress: String

Temperature
sensors

Wind force
and direction

sensors

Weight
sensors

Individual
transducers of

video signal

Video signal
common

transmitters

RF
communication

system

GSM
communication

system

Data
processing
and routing

system

Database WEB interface
and

visualization
system

Alternative
Energy
System

Control and
management

system

Electricity
charging and

storage system

Humidity
sensors

1..*

1..*

+VS deveji 1..*

+VS individualie deveji 0..*

+Sensori

1..*

+temperstursd sensori0..*

+AB sistema

1

+Elektro apgades sistema 1..*

+Sensori 1..*

+Veja sensori 0..*

+Sensori

1..*

+Svara sensori 0..*

+AB system 1

+Video signala sensori 1..*

1..*

0..*

1..*

1..*

+AB sistema 1

+datu apstrades sistema 1..*

1..*

1..*

1..*0..*

1..*

1..*

+VS deveji 1..*

+VS kopejie deveji 0..*

1..*

1..*

1..*

0..*

+AB systema

1

+Sensors 1..*

+AB sistema 1

+Komunikaciju sistema

1..*

1..*

1..*

Proc. of the Int. Conference on Modeling and Applied Simulation 2019,
ISBN 978-88-85741-29-4; Bruzzone, De Felice, Dias, Massei and Solis, Eds.

131

Figure 6: The Scheme of MQTT Service Broker

The services broker depicted in this paper ensures QoS

level “0” that is sufficient for the nature of services

consumed by the clients of Autonomous Beekeeping

system.

Fifure: 7. Outdoor weight scale and sensors installation.

The temperature sensor-transmitters transfer data to the

server-broker every 15 minutes, the weight sensor

transmits data to the server every 5 minutes. The data

collected by the MQTT broker are displayed in graphical

form. The users interpret data in graphics or as

“dashboard”, based on their own experience and

understanding of ongoing processes in the hive.

For monitoring of the temperature two sensors are

allocated inside of a beehive: one in the center and the

second one in the side part of a beehive The third sensor

is allocated at the outside wall of the beehive to get

measurements of ambient air temperature. The weight of

each hive is measured by a specially designed weight

platform (Fig. 7). Measurement data are sent by a sensor-

transmitter to the gateway-concentrator without

additional processing.

Beekeepers and the other project partners are interested

to compare behavior of bee colonies and particularly, at

the transitions of the seasons, when bees start awaking

before to leave hives after the winter time. A multi-chart

view provides an opportunity of comparison of bee

colonies (see Fig. 8).

Figure: 8. Multi-chart view of temperature measurement

inside of 5 beehives

Node-RED ensure decoding and to routing MQTT smart

metering data (Fig. 9) to further service orchestration or/

and for use in external services as customer billing or

monitoring systems.

Figure: 9. The nodeRED workflow for wireing of

different devices and data processing.

An Inject node (is not shown due to the lack of space) is

a testing element to generate a simulated payload for

debugging purposes. Below is an example of a sample

payload for a sensor with weight data:

MQTT payload: 00:04:40 42 0B

1C3003AE0030 0337 002580, where
1C3003AE0030 is a sensor ID, RSSI LENSN03, 37
(battery level) and 002580 is data read out.

The task is to decode the payload and forward it to a data

storage and visualization service using the IoT approach.

The first step is to define a MQTT source, which is a

gateway.

Weight

Temperature
outside

Temperature
inside

Humidity

Wind speed

MQTT Wifi /
GSM

gateway

Wifi access point

MQTT payload: 00.00 00:04:51 AD 08 2E3CE005

0333 0490

Meter Time/
Date

MQTT broker

RSSI Length
Device ID
& Serial

Telegram counter
& battery voltage

Data

Publish telegram by
Topic: MAC address

Node-RED
engine

Data decoding
Data storage
Data/Event

orchestration

Data forwards

External MQTT
brokers & services

subscription

EmonCMS
Billing systems

Event generators

Dashboards

Subscribe by Topic: MAC
address, gateway, service

MySQL, MongoDB
RESTfull services:
Humidity, Wind,
Temperature

Proc. of the Int. Conference on Modeling and Applied Simulation 2019,
ISBN 978-88-85741-29-4; Bruzzone, De Felice, Dias, Massei and Solis, Eds.

132

Gateways post received metering data to topic based on

their MAC address that also serves as a configuration

service by subscribing to MAC configuration. The node

“SERIAL+VALUE” creates an array of elements from

the initial payload (telegram); each array element is

processed separately depending on the needed of output

or post-processing. A new object is created by dividing

name/value pairs, where the crucial elements are: serial

number – that identifies the data type and coding format

and the unique device id, which makes the metering

devices distinct. The second value is the data block

needed for decoding procedures. Double output creates

two new MQTT messages containing separated data

from each sensor, with measurement type topic and

devices unique serial number.

For further processing (e.g. monitoring, for serving of

external clients) emoncms (Open Energy Monitor) code

base is used (node Wight->emonCMS). From the

example above a type+device_id object name is

generated. After data delivery to emoncms, these data

objects are discovered as inputs. Inputs are generic

variable that can be processed using emoncms processing

engine.

Figure: 9. An algorithm of the block for Query Emoncms

API

Before saving information for analysis and

representation, pre-calculation of sensors measurement

offset values should be done in order to calculate the

actual sensor readout value. At Fig.9 an example of “log

to feed” value pre-calculation for a weight (Svars in

Latvian) sensor is depicted. Users can customize data

transformation, delta offsets, calibration, scaling etc.

Typically, the broker does not save MQTT data. This can

be done by defining a flow to a data storage, like MySQL

DB. In this application, data storage is defined in

emoncms with the “Log to feed” processor.

RESTful services can be implemented on demand from

the MySQL DB via EmonCMS API by encapsulating the

API request into a restful call or by direct definition of a

request in form of a RESTful HTTP request. An example

of returned value from a request for the latest data of the

weight measurement sensor. A request from 03.05.2019

to 05.05.2019 at an interval of 5 minutes from the feed

ID=798. GET:

http://broker.ventspils.lv:9990/emoncms/feed/data.json?

id=798&start=1556443800000&end=1557049500000&

interval=900&skipmissing=1&limitinterval=1

1556443800000,44938,[1556444700000,44

914.666666667],[1556445600000,44987.6

66666667,….

4. DISCUSSION OF THE RESULTS

In our research we applied the Arrowhead Framework

approach to develop and document a small SoS using

industrial automation and IoT methods. This real SoS

operates in a local automation cloud, which comprises

core systems and application systems services

(temperature, humidity etc.). A core system, namely the

Event Handler System, provides several core services:

Registry, Publish, Notify and Get Historical Data

services.

The use case of autonomous beekeeping system

demonstrates, how a MQTT service broker implements

the functions and services of EHS. Among the others it

provides opportunity to different stakeholders to

“subscribe” to the services taking into account a define

QsS.

In the future research we plan to add a new SoS to the

existing automation cloud, therefore a new automated

beekeeping system, which belongs to a different

stakeholder, to be incorporated.

We are going to apply advantages of the AF in order to

enlarge the automation cloud without significant

reconfiguration, which would require much time and

efforts. Reconfiguration process should facilitate a

correct evolution of the SoSs by updating

documentation, systems interfaces, while minimizing the

required changes. This could be done thank to:

 Formal description of the SoS structure in UML

– SysML.

 Possibility to map the elements of the

documentation to engineering procedures.

 Feasibility and benefits of AF approach, which

are demonstrated at real-life use cases (see

chapter 2).

A concern about security issue should be investigated in

the future research, since several stakeholder systems

will operate in a single automation cloud.

The research provided in AB project is aware of

achievements of the FP7 Framework project ITAPIC,

which was devoted to “precision beekeeping” topic.

Unlike ITAPIC, the AB project:

 Applies new, more efficient wireless

technology and IoT solutions:

 It focusses on development of an integrated /

multifunctional (mass, temperature, humidity,

meteorological data measurement, video data)

system, aiming at application in today's

practical beekeeping.

 The system allows remote monitoring not only

at individual bee colonies, but also at apiary

level.

 We test the AB system at real production

conditions, under the supervision of highly

qualified and professional beekeepers.

Proc. of the Int. Conference on Modeling and Applied Simulation 2019,
ISBN 978-88-85741-29-4; Bruzzone, De Felice, Dias, Massei and Solis, Eds.

133

 Recommendations for beekeepers how to

interpret equipment data measurements will be

elaborated.

The restrictions of the research derive from requirements

of the European Agricultural Fund for Rural

Development Program. According to the Program, the

cost of the prototype must be affordable for potential

clients in Latvia, which are represented by farmers, who

maintain usually 50-350 beehives. The AB system

prototype is developed as a compromise between cost

and quality of the system.

5. CONCLUSIONS AND NEXT STEPS

In our research we developed Event Handler System

(EHS) as a service broker, which enables SOA based

services and data flow between divergent type of

embedded devices and nodes, such as outdoor and indoor

temperature, humidity, weigh monitoring and humidity

sensors. We applied the previous experience, when the

EHS provided services have been used for monitoring

and control of Smart City systems and utility networks

(water supply, district heating, etc.) (Zabasta 2018). In

our research, the service broker demonstrates how

Arrowhead Event Handler system can be implemented

for processes automation at rather different field such as

intensive beekeeping.

By now the Event Handler system’ working prototype is

located and maintained at the “Ventspils Digital Center”

(VDC) servers cloud, which belongs to Ventspils City

Council as an institution responsible for development

and maintenance of ICT infrastructure in the Ventspils

city, Latvia. It is planned to migrate ICT infrastructure of

AB system from VDC to one of public hosting providers

in order to ensure sustainability of AB system beyond the

project.

Development of autonomous beekeeping system’

prototype is still in progress. The research by the end of

the project should be focused on the opportunity to apply

alternative energy sources, such as wind and

photovoltaic elements, as well on security issues.

ACKNOWLEDGEMENT

The article is based upon the project “Autonomous
Beekeeping” funded by the European Agricultural Fund
for Rural Development Program, 2014-2020,
Cooperation: Support new products, methods, processes
and technologies.

REFERENCES

Albano M., Ferreira L. L., and Sousa J., 2016. Extending

publish/subscribe mechanisms to SOA

applications. 2016 IEEE World Conference on

Factory Communication Systems (WFCS), P. 1-4.

Alps I., Gorobecs M., Beinarovica A., Levcenkovs A.,

2016. Immune Algorithm and Intelligent Devices

for Schedule Overlap Prevention in Electric

Transport. No: 2016 57th International Scientific

Conference on Power and Electrical Engineering of

Riga Technical University (RTUCON), Latvia,

Riga, 13.-14. October, 2016. Riga: IEEE, 2016, pp.

1-7.

Altun A. A. 2012. Remote Control of the Temperature-

Humidity and Climate in the Beehives with Solar

Powered Thermoelectric System, J. Control Eng.

Appl. Informatics, vol. 14, no. 1, pp. 93–99, 2012.

Alessandrelli D., Petraccay M., and Pagano P., 2013. T-

Res: Enabling reconfigurable in-network

processing in IoT-based WSNs. In Proceedings -

IEEE International Conference on Distributed

Computing in Sensor Systems, DCoSS 2013, pages

337-344.

Blackstock M., and Lea R., 2012. WoTKit: a lightweight

toolkit for the web of things, in Proceedings of the

Third International Workshop on the Web of

Things. ACM, 2012, p. 3.

Blackstock, M. and Lea, R. 2014. Toward a Distributed

Data Flow Platform for the Web of Things

(Distributed Node-RED). Proceedings of the 5th

International Workshop on Web of Things (New

York, NY, USA, 2014), pp. 34–39.

Blockly, 2019. Google Blockly Homepage:

https://developers.google.com/blockly/. [Accessed:

March 2019].

Blomstedt, F., Ferreira, L., Klisics, M., Chrysoulas, C.,

de Soria, I., Zabašta, A., Moris, B., Eliasson, E.

Johansson M., Varga P., 2014. The Arrowhead

Approach for SOA Application Development and

Documentation. In: Proceeding 40th Annual

Conference of the IEEE Industrial Electronics

Society (IECON 2014), United States of America,

Dallas, 29 Oct-1 Nov., 2014. Dallas: The Institute

of Electrical and Electronics Engineers (IEEE),

2014, pp.2637-2637.

Delsing J., ed., 2016. IoT based Automation - made

possible by Arrowhead Framework. CRC Press,

Taylor & Francis Group.

Delsing J., 2017. Local Cloud Internet of Things

Automation: Technology and Business Model

Features of Distributed Internet of Things

Automation Solutions 2017 In: IEEE Industrial

Electronics Magazine, Vol. 11, no 4, p. 8-21 Article

in journal (Refereed).

Eugster P. T., et al, 2003. Felber P., Guerraoui R.,

Kermarrec A-M., 2003. The Many Faces of

Publish/Subscribe, ACM Computing Surveys

35(2), 2003, pp. 114-131

Giang N., Lea R., Blackstock M., Leung V.C. M., 2016.

On Building Smart City IoT Applications: a

Coordination-based Perspective, in Proceeding

SmartCities ’16, December 12-16, 2016, Trento,

Italy pages 1-6.

Gross H-G., 2005. Component-Based Software Testing

with UML, Springer-Verlag Berlin Heidelberg,

ISBN 3-540-26733-6.

HiveMQ, 2015. MQTT Essentials Part 6: Quality of

Service 0, 1 & 2, Written by The HiveMQ Team,

published: February 16, 2015, [accessed in April

2019].

Proc. of the Int. Conference on Modeling and Applied Simulation 2019,
ISBN 978-88-85741-29-4; Bruzzone, De Felice, Dias, Massei and Solis, Eds.

134

ISO 2016. MQTT 3.1.1 Specifications. International

Organization for Standardization, ISO/IEC 20922.

https://www.iso.org/standard/69466.html.

[Accessed: April 2019].

ITAPIC, 2016. The Application of Information

Technologies in Precision Apiculture (ITApic)

ERA-NET ICT-Agri Project,

http://www.itapic.eu/index.php [accessed in April

2019].

Karnouskos S. et al., 2010. Karnouskos S., Colombo

A.W., Jammes F., Delsing J., Bangemann T., 2010

Towards an architecture for service-oriented

process monitoring and control, in: 36th Annual

Conference of the IEEE Industrial Electronics

Society (IECON-2010), Phoenix.

Kleinfeld, R. et al. 2014. Glue.Things: A Mashup

Platform for Wiring the Internet of Things with the

Internet of Services. Proceedings of the 5th

International Workshop on Web of Things New

York, NY, USA, 2014, pp.16–21.

Kunickis M., Dandens A., Bariss U., 2015. Justification

of the Utility of Introducing Smart Meters in Latvia.

Latvian Journal of Physics and Technical Sciences.

Volume 52, Issue 6, 1 December 2015, Pages 13-

21.

Lewis K., 2016. Node-RED visual programming for the

Internet of Things (IoT) is now a JS Foundation

Project. https://www.ibm.com/blogs/internet-of-

things/open-source-iot/ [Accessed in March 2019].

Lindström J., Hermanson A., Blomstedt F., and Kyösti

P., 2018. A Multi-Usable Cloud Service Platform:

A Case Study on Improved Development Pace and

Efficiency. In: Applied Sciences, 2018, 8(2), 316,

Vol. 8, no 2, https://doi.org/10.3390/app8020316.

Norris D., 2004. Communicating Complex Architectures

with UML and the Rational ADS, In Proceedings of

the IBM Rational Software Development User

Conference.

Maier M. W., 1998. Architecting Principles for Systems-

of-Systems, In Systems Engineering, volume 1,

issue 4: pp. 267-284.

Newton R., Arvind, and Welsh M., 2005. Building up to

macroprogramming: An intermediate language for

sensor networks. In: 4th International Symposium

on Information Processing in Sensor Networks,

IPSN 2005, volume 2005, pages 37-44.

NoFlo, 2019. Flow-Based Programming for JavaScript

NoFlo: http://noflojs.org/. [Accessed: March 2019].

OASIS Standard, 2014. MQTT Version 3.1.1,

http://docs.oasis-

open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf.

[Accessed: March 2019].

OMG, 2005. OMG Model Driven Architecture, [Online].

Available from: http://www.omg.org/mda

[Accessed: February, 2019].

Open Energy Monitor, Open source monitoring for

understanding energy,

https://openenergymonitor.org/ [Accessed in

March 2018].

Pereira et al, 2014. Pereira, Punal P., Jens Eliasson J., and

Delsing J. An authentication and access control

framework for CoAP-based Internet of Things. In

Industrial Electronics Society, IECON 2014-40th

Annual Conference of the IEEE, pp. 5293-5299.

IEEE, 2014.

Shelby Z, Hartke K., and Bormann C., 2014. The

constrained application protocol (CoAP), RFC

7252 (Proposed Standard), Jun. 2014.

Sultanovs E., Skorobogatjko A., and Romanovs A.,

2016. Centralized Healthcare Cyber-Physical

System’s Architecture Development. In:

Proceedings of the 2016 57th International

Scientific Conference on Power and Electrical

Engineering of Riga Technical University, Latvia,

Riga, 13-14 October, 2016. Riga: RTU Press, 2016,

pp.153-158.

Varga P., Blomstedt F., Ferreira L. L., Eliasson J.,

Johansson M., Delsing J, and de Soria I. M., 2016.

Making system of systems interoperable— The

core components of the Arrowhead Framework, J.

Network Computer Appl., vol. 81, pp. 85–95, Mar.

2016.

Zabasta A., Kuņicina N., Kondratjevs K., Patlins A.,

Ribickis L., Delsing J., 2018. MQTT Service

Broker for Enabling the Interoperability of Smart

City Systems”. International Conference on Energy

and Sustainability in Small Developing Economies

- ES2DE18. Funchal, Spain, 9 - 11 July 2018, pp.1-

6.

Zacepins A., V. Brusbardis V., Meitalovs J., and

Stalidzans E., 2015. Challenges in the development

of Precision Beekeeping, Biosyst. Eng., vol. 130,

pp. 60–71, Feb. 2015.

Zacepins A., Kviesis A., Pecka A., and Osadcuks V.,

2017. Development of Internet of Things concept

for Precision Beekeeping, Conference: 2017 18th

International Carpathian Control Conference

(ICCC), P.1-5.

Zacepins A., Stalidzans E., and Meitalovs J., 2012.

Application of information technologies in

precision apiculture, in Proceedings of the 13th

International Conference on Precision Agriculture

(ICPA 2012), p.1-6.

AUTHORS BIOGRAPHY

Anatolijs Zabasta, Dr. Sc. Ing., Senior researcher and

Projects manager has been working in RTU since 2010.

The fields of scientific interests are electrical

engineering, embedded systems, critical infrastructure.

He was a researcher and project manager in EU projects:

ERASMUS+ CBHE, TEMPUS, FP7 ARTEMIS,

INTERREG, COST Actions and Latvian State Research

Program’s projects. A. Zabasta is an author of 75

scientific publications. Contacts: +371-29232872,

anatolijs.zabasta@rtu.lv.

Nadezhda Kunicina, Dr. Sc. Ing. Professor, has been

working in RTU from 2005. The fields of scientific

interests are electrical engineering, embedded systems,

Proc. of the Int. Conference on Modeling and Applied Simulation 2019,
ISBN 978-88-85741-29-4; Bruzzone, De Felice, Dias, Massei and Solis, Eds.

135

sustainable transport systems, and energy effectiveness

in industrial electronics and electric transport. She was a

senior researcher and a scientific project manager of FP7

ARTEMIS, INTERREG, COST Actions, ERASMUS+

CBHE, TEMPUS and Latvian State Research Program’s

projects. N. Kunicina is an author of 139 scientific

publications. Contacts: +371-67089052,

nadezda.kunicina@rtu.lv.

Kaspars Kondratjevs, PhD student, Researcher has

been working in RTU since 2013. The fields of scientific

interests are electrical engineering, embedded systems,

critical infrastructure, wireless communication systems.

He was a researcher in EU projects: FP7 ARTEMIS,

INTERREG, COST Actions and in Latvian State

Research Program’s projects. K. Kondratjevs is an author

of 26 scientific publications. Contacts: +371-26123500,

Kaspars.kondratjevs@gmail.com.

Leonids Ribickis, Dr. Habil. Sc. Ing., prof., Director of

Institute of Industrial Electronics and Electrical

Engineering, Rector of RTU, Academician of the Latvian

Academy of Sciences. His academic expertise - training

of the specialists in the field of electro physics, energy

effective lighting, power electronics, equipment design,

industrial as well as micro- and nanoelectronics, usage of

semiconductors and energy saving. Member of the Board

of the World Energy Council Latvian National

Committee, Head of the Latvian sub-department of the

IEEE. Contacts: +371-67089300, leonids.ribickis@rtu.lv

Proc. of the Int. Conference on Modeling and Applied Simulation 2019,
ISBN 978-88-85741-29-4; Bruzzone, De Felice, Dias, Massei and Solis, Eds.

136

