
 

 

 

ABSTRACT 
Dengue, Zika and chikungunya are among the 
infectious diseases that have emerged in recent years. 
The common denominator to these three is their 
transmitting vector: the Aedes aegypti mosquito. Due to 
sanitary reasons, it is highly important that the vector 
for transmitting these diseases be controlled through the 
implementation of strategies specifically designed for 
each situation. In this article, the creation of an agent-
based simulation model that allows assessing control 
strategies and policies through parallel computing on 
GPU is proposed. High Performance Computing is 
necessary due to the large volume of data that has to be 
processed (hundreds of thousands of agents) to obtain 
results within an acceptable time frame. Model 
validation was done at small scale with an analogous 
model on CPU and NetLogo and using data from an real 
system. In this article, the implementation, scalability 
and potential of this model as decision support system 
(DSS) are presented. 

Keywords: Infectious Diseases, Agent-Based Model, 
GPU, FLAME GPU 

1. INTRODUCTION
The influence of human activity on the environment has 
resulted in the degradation of nature. The relation 
between climate change and the effects on human health 
are evident in the proliferation of infectious diseases on 
different locations around the globe (Barba-Evia 2016). 
The World Health Organization (WHO) declared a 
public health emergency situation, describing it as “an 
extraordinary event which is determined [...] to 
constitute a public health risk to other States through the 
international spread of disease; and to potentially 
require a coordinated international response” (Maguiña-
Vargas 2016). Dengue, Zika and chikungunya are 
among the infectious diseases that have emerged in 
recent years. The spread of these diseases has become a 

complex situation with high mortality levels (Álvares, 
Torres, Torres, Semper, Romeo 2018).  The three 
diseases are transmitted through the Aedes aegypti 
vector, a mosquito species typical of tropical regions. 
Due to its adaptability, it has spread all over the globe 
through commercial and tourist routes. Currently, the 
three diseases that are transmitted by this mosquito are 
among those of greatest concern for public health 
(López-Latorre, Neira 2016). 
Due to the importance for public health of controlling 
this vector, control strategies that are specifically 
designed for each particular situation are required. To 
this end, it is highly important to know mosquito 
populational characteristics and how they propagate 
(Albrieu-Llinás, Chiappero, Rodán-Dueñas, Gardenal 
2016). 
The modelization of complex systems through classic 
models based on continuous and derivable functions is 
not enough to describe the complexity of their 
components and relations. For this reason, 
computational models have gained relevance as a 
solution to study and research living entities systems 
(Ginovart 2015). 
One of the tools that can assist in the decision-making 
process and help prevent diseases is simulation. 
Complex-system Agent-Based Modeling (ABM) has 
emerged to simulate the collective behavior of 
individuals in different scenarios, allowing researchers 
to study their characteristics in a short period of time 
(Izquierdo-Espinosa 2016). Agents are autonomous 
individuals that are familiar with the environment where 
they are, which allows them to interact with other 
agents. Agent behavior is determined by their inner 
state, a set of data that allows them to store information 
and act through temporary and historic perceptions. The 
environments where agents interact can be cities, towns, 
or any location in the real world that the researcher 
wants to model (López 2017). This allows this type of 
model to know system behavior through agent 
characteristics and behaviors as well as understanding 
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how the system itself affects the individuals it contains 
(Cantergiani, Gómez-Delgado 2016). Agents control 
their own behavior, but this behavior is not without any 
limits, but conditioned by the behavior of other agents. 
Agents are social actors with heuristic reasoning based 
on simple rules, and their behavior can be modified 
through learning from previous experiences. This means 
that they have limited memory to remember interactions 
and the results of their actions and strategies, and they 
use these to decide on new actions. 
The amount of information generated through ABMs 
requires enough computational power in all its stages – 
screening, analysis and visualization. Simulating most 
complex problems requires using parallel or distributed 
solutions to obtain results within an acceptable time 
frame. 
In recent decades, the advance of Graphics Processing 
Units (GPUs) in general-purpose programming 
(GPGPU), has allowed speeding up numerous 
applications that can be adapted to this architecture 
(Montes de Oca, De Giusti, De Giusti, Naiouf 2018). 
GPU is a manycore architecture whose approach is 
based on running parallel applications, with core 
number being doubled in each new generation. These 
devices have evolved and increased the calculation 
power in each floating point per second (initial design 
feature), which allows carrying out mass calculations of 
this type and in parallel. This parallel architecture has 
become one of the most widely accepted architectures 
by the scientific community, since its monetary cost is 
acceptable in relation to its computation power for the 
development of applications with high calculation 
demands (Wu, Deng, Jeon 2018). 
GPU programming was benefited by the launch of 
CUDA (Compute Unified Device Architecture) by 
Nvidia in 2007, which freed programmers from having 
to consider parallel expressions (Aguilera, Silva-
Aceves, Torres-Arguelles, Martínez-Gómez, Bravo-
Martínez 2018). However, to exploit GPU performance 
to its maximum, programmers need to be familiar with 
the underlying architecture and optimize it as relevant, 
for instance, by using shared memory to reduce global 
memory latency time, kernel synchronization at the 
host, etc. (Nvidia 2019). 
The implementation of a complex system such as the 
one presented here requires great dedication and effort 
to develop the ABM simulation kernel. Therefore, we 
decided to use the FLAME GPU framework (Chimeh, 
Richmond 2018). With this framework, we can 
disregard parallel simulation and focus on the 
simulation model for infectious diseases transmitting 
vector reproduction, obtaining results within an 
acceptable time frame.  
FLAME GPU is a framework that allows simulating 
real-world individuals or objects into virtual agents. It is 
an extension of the FLAME (Flexible Large-scale 
Agent-based Modeling Environment) version.  

Its main goal revolves around expanding framework 
features to allow modeling GPU agents. It is 
specifically designed for high-performance parallel 
architectures, and it can create models with a massive 
number of agents (Richmond, Chimeh 2017). Agents 
are defined as finite state machines (with memory). 
Agents communicate via messages. Agent behavior is 
reflected on the functions it can perform, which change 
the agent's internal memory through inbound or 
outbound messages (Heywood, Maddock, Casas, 
García, Brackstone, Richmond 2018). Each agent's 
memory is permanent for each step of the simulation, 
but its message list is not. This provides internal 
communications that reflect the global behavior of the 
virtualized world. 
The model to simulate is specified using a format called 
X-Machine Markup Language (XMML). It is about 
using XML to describe the agent and its behavior, the 
list of messages used by agents to communicate to each 
other, and the resulting control flow of the simulator 
(Chimeh, Heywood, Pennisi, Pappalardo, Richmond 
2018). 
The model defined in XMML generates the code for a 
set of templates through Extensible Stylesheet 
Transformations (XSLT). From those templates, a set of 
API dynamic templates is generated and added to agent 
features to produce the simulator (FLAME GPU 2018). 

2. BACKGROUND
Aedes aegypti is a species of mosquito originally form 
Africa; it is believed that it used to breed inside tree 
trunk holes in the woods in the north of this continent. 
A period of intense drought forced the species to 
migrate to populated areas, favoring its fast adaptation 
in urban areas (Ruíz-López, Gonzalez-Maso, Vélez-
Mira, Gómez, Zuleta, Uribe, Vélez-Bernal 2016). This 
adaptation to anthropic environments is due to the 
availability of the necessary food for their development 
and survival (Rossi, Almirón 2004). Currently, it has 
spread all around the globe due to commercial and 
tourist activities, coupled to the fact that mosquito 
reproduction control and elimination health programs 
are inefficient and there is an accelerated and non-
planned growth of the population (Álvares, Torres, 
Torres, Semper, Romeo 2018).  
The life cycle of Aedes aegypti has four stages: egg, 
larva, pupa and adult. Female mosquitoes need to take 
blood to make the eggs. They prefer low luminosity 
hours or night time to deposit their eggs in containers 
with water. Once the eggs are submerged in water, 
depending on temperature and humidity conditions, 
they hatch on the second or third day. They are resistant 
to drying out and can survive for months or years in 
dried out containers (Byttebier, De-Majo, Fischer 
2014). 
Larvae are aquatic and feed on the organic matter found 
in the container, including larvae from other species (or 
even their own). After fourteen days, at temperatures 
between 25ºC and 29ºC, larvae transform into pupae, 
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and remain at this stage for two to three days. In this 
state, they do not eat and use the energy accumulated 
during the larva period to transform. Finally, they 
experience anatomic and physiological changes and 
emerge as winged, dimorphous adults that seek humid 
places where there are no wind drafts. After 24 hs, they 
can already mate, and can live between 35-40 days 
(Rossi, Almirón 2004; Valendia-Romero, Olano, 
Coronel-Ruíz, Cabezas, Calderón-Peláes, Castellanos, 
Matís 2017). 
The different types of containers they can use to breed 
depend on water supply, availability of food for the 
larvae, exposure to sunlight, and whether the container 
has a cover on top (Ngugi, Mutuku, Ndenga, Musunzaji, 
Mbakaya, Aswani, Irungu, Mukoko, Kitron, LaBeaud 
2017). 
When an adult mosquito bites, before it sucks any 
blood, it injects its own saliva, which contains a mix of 
anesthetic, blood thinners and histamine so that the host 
does not detect the bite and the blood does not 
coagulate, helping the mosquito get more of it and faster 
by reducing the amount of time required to be in contact 
with the host (Rossi, Almirón 2004). 
Mosquitoes acquire the infection when they feed on a 
viremic person (Albrieu-Llinás, Chiappero, Rodán-
Dueñas, Gardenal 2016). The virus is transmitted only 
through the mosquito bite, not from one individual to 
another. However, there have been some cases of Zika 
virus where transmission occurred through the sexual 
act or during gestation (from the mother to the fetus) 
(Gorodner 2016). 
Aedes aegypti uses a large number of natural or 
artificial containers as habitat for its larvae. Some of 
these containers are more productive than others, 
meaning that vector control efforts should be aimed at 
eliminating the most productive ones, since these are 
the ones with higher epidemiological relevance. These 
strategies are correlated both vector local ecology and 
resident habits and attitudes in relation to containers 
(WHO 2009). 
Any containers manufactured by man that are suitable 
for the development of mosquitoes in their non-mature 
stages are called “artificial microenvironments.” Their 
distinctive characteristics are (Grech, Ludueña-Almeida 
2016): 

 Small size in comparison with natural
environments such as swamps, irrigation
channels, retention ponds, etc;

 They support a low number of species with
reduced populational sizes;

 They do not generate organic matter;
 They are temporary environments with a lower

frequency of predators.

The World Health Organization (WHO) recommends 
surveillance of the mosquito population as a method for 
analyzing and assessing prevention and control actions 
for the diseases transmitted by this vector (Cromwell, 
Stoddardt, Barker, Van-Rie, Messeer, Meshnick, 

Morrison, Scott 2017). Entomological surveillance is 
used for operational and research ends, to determine the 
following (WHO 2009): 

 Vector geographical distribution;
 Obtaining measurements about vector

population;
 Facilitating appropriate and timely decisions in

relation to interventions.

There are several surveillances methods, and using each 
of them depends on the availability of skills and 
resources and, oftentimes, the level of infestation. The 
WHO recommends a sampling frequency of “weeks to 
months.” Sampling methods vary based on the stage in 
the life cycle of the mosquito (Cromwell, Stoddardt, 
Barker, Van-Rie, Messeer, Meshnick, Morrison, Scott 
2017). The most common surveillance methodologies 
use sampling procedures for larvae or pupae, rather than 
capturing eggs or adult mosquitoes. The basic sampling 
unit is the household, where searches are carried out to 
detect containers filled with water. Typically, a 
laboratory analysis is required to confirm the species. 
To regulate infestation levels, the following indexes are 
normally used: 

 Household Index (HI): percentage of houses
infested with larvae and/or pupae.

 Container Index (CI): percentage of water-
holding containers infested with larvae and/or
pupae.

 Breteau Index (BI): number of positive
containers per 100 houses inspected.

 Pupae Per Container Index (PCI): total number
of pupae for every 100 containers inspected.

The main recommendation for dengue campaigns is 
eradicating the most productive breeding environments 
based on the use of local evidence of pupal productivity 
in the containers. This strategy has been successfully 
used in many countries (Villegas-Trejo, Che-Mendoza, 
Gonzalez-Fernandéz, Guillermo-May, Gonzalez-
Bejarano, Dzul-Mansilla, Ulloa-Gracia, Danis-Lozano, 
Manrique-Saide 2011). 

2.1. Classic Epidemiological Models 
Numeric modelization is a useful and pretty accurate 
tool that allows studying, analyzing and drawing 
conclusions about the system being considered, which 
allows making decisions towards controlling epidemic 
outbreaks (Medina-Arce, Ramos-Tapias 2017). The 
most commonly used models are compartment-based 
ones. Compartments represent a region with a group of 
evenly distributed individuals. While the individuals are 
static, it is the disease that moves in space through 
states (López 2017), which are based on the states 
through which the individuals go through. Available 
literature describes several mathematical models aimed 
at simulating infectious disease propagation. In relation 
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to the transmission of dengue, Zika and chikungunya, 
the following references can be found, for example: 

 Ross-MacDonald model, based on ordinary
differential equations, describing the dynamics
for the relation between mosquitoes and
humans, to model dengue disease in Cali,
Colombia (Sepúlveda-Salcedo, Vasilieva,
Martínez-Romero, Arias-Castro 2015);

 Mathematical model that uses ordinary
differential equations to describe the evolution
in time of human and mosquito populations in
relation to the chikungunya virus in Guatemala
(Ponciano, Chang, Quiroga 2018);

 Compartment-based mathematical model on a
subpopulational network focused on dengue,
Zika and chikungunya diseases (Anzo-
Hernández, Velásquex-Castro, Bonilla-Capilla,
Soto-Bajo 2018).

2.2. Agent-Based Epidemiological Modeling 
Agent-based models are models that can be 
implemented on computers and allow describing 
problems whose analytical solution results are difficult 
to interpret or problems where finding a solution takes 
too much time (Rodriguez-Zoya, Roggero 2015). They 
have been widely used by the scientific community to 
understand how diseases are transmitted. References of 
epidemiological models based on agents developed for 
GPU architecture were gathered for this work; the most 
relevant are: 

 ABM to simulate an activated sludge reactor
on GPU (Pereda-García 2014);

 ABM modeling of an immune system using
the FLAME GPU framework (Tamraker
2015);

 Implementation of a hybrid model using Verlet
integration method and ABM to simulate
agents involuntary and intentional interactions
within a given mass; simulation results being
presented on a GTX 750 GPU (Gutierrez-
Milla, Borges, Suppi, Luque 2016);

 ABM for Reynolds' Boids simulation using
GPU; a comparison with already implemented
models is made. The results obtained show
great speedup and a better understanding of
agent behavior (Hermellin, Michel 2016);

 ABM that allows finding a treatment for vocal
chord inflammation. The ABM proposed is run
on GPU and, specifically in this work, a 3D
visualization feature is added to the model
(Seekhao, Jaja, Mongeau, Li-Jessen 2017);

 Simulation architecture called ParaCells, used
to model biological problems. It uses the
concepts of ABM and leverages the parallelism
in GPU (Song, Yang, Lei 2018);

 Simulation of the pilgrimage to Makkah using
an underlying model with agents, implemented

with CUDA for GPU (Majid, Hamid, 
Rahiman, Zafar 2018). 

There were no references in the literature reviewed for 
this work to models similar to the one presented here 
implemented on a high-performance architecture, based 
on GPU. 

3. MODELING AND SIMULATION
In this article, an agent-based model is proposed for 
assessing the pupal productivity of Aedes aegypti 
mosquito. The model considers mosquito reproduction, 
which is dependent on container productivity. Results 
obtained in (Borges, Gutierrez-Milla, Suppi, Luque, 
Brito-Arduino 2015) show the effects on infectious 
disease propagation if container productivity is 
considered when developing prevention and control 
actions. As a first approximation, (Borges, Gutierrez-
Milla, Suppi, Luque, Brito-Arduino 2015) developed a 
model on NetLogo; however, given the characteristics if 
this environment (based on Java), obtaining results for a 
large number of individuals and different scenarios 
within an acceptable time frame is not possible. To 
overcome these issues, a new agent-based model that 
can be run on a high-performance architecture, based on 
the FLAME GPU environment, is proposed. This new 
model, suitable for high-performance parallel 
environments, will allow modeling larger areas and 
simulate different scenarios within acceptable time 
frames. In the following sections, both approximations 
are presented, and the results obtained with the new 
version of the model proposed here are discussed. 

3.1. Model on NetLogo 
In (Borges, Gutierrez-Milla, Suppi, Luque, Brito-
Arduino 2015), an agent-based model that allows 
assessing the pupal productivity of Aedes aegypti 
mosquito species was proposed. It is based on the 
control actions proposed by the WHO, considering the 
traditional method proposing division into areas, called 
strata, containing houses and breeding sites for Aedes 
aegypti. The mosquito gets the infection if it bites an 
infected individual and then, when it bites another 
individual who is not infected, it may transmit the 
disease. Only female mosquitoes can bite; they use the 
blood they suck to lay their eggs. Considering container 
productivity can help sanitation agents come up with 
more efficient actions, since they can focus on 
removing those containers whose productivity is higher, 
reducing the population of Aedes aegypti and, therefore, 
minimizing the risk for contagion. 
The model was validated with data obtained from the 
real system through a study carried out in São 
Sebastião, which is on the northern coast of the state of 
São Paulo, 220 Km away from the state capital (Brito-
Arduino 2014). In this study, a percentage of container 
productivity was obtained through field work. 
Containers were classified into removable and non-
removable. This percentage is compared with the 
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average number of pupae produced in each container in 
several simulation runs.  
The main limitations of the model developed on 
NetLogo revolve around its inability to simulate large 
areas. In (Brito-Arduino 2014), the study area 
encompassed 400.4 km2. NetLogo was able to simulate 
30,600 m2, which represents a very small fraction of the 
total. Also, NetLogo only allows sequential runs, which 
means that a very long time is required to reach results 
statistical stability, since this type of models has a very 
high computational demand when the number of 
individuals is increased. 

3.2. Model on FLAME GPU 
Even though the types of agents to be represented and 
their interactions are similar to those implemented on 
the NetLogo model, their development is completely 
different, since the language used for modeling and 
interaction is entirely different. The same as NetLogo, 
FLAME GPU allows creating multiple agents (with 
internal memory and a set of functions that represent 
their actions) that interact through messages.  
The framework, using an XML file and a functions.c 
file (containing agent actions implementation), is 
responsible for creating all necessary files (with .cu 
extension) that will form the simulator.  
The developer only has to focus on implementing the 
details that are specific to the problem to be modeled, 
since the framework not only translated the code into 
CUDA language, but it also carries out all necessary 
optimizations to achieve maximum performance for the 
underlying GPU architecture.  
The model simulates three types of agents: people, 
mosquitoes and containers. Some important parameters 
in the model are: the number of people and/or 
mosquitoes initially infected, the sizes of the 
populations of people and mosquitoes, the number and 
types of containers, the mosquitoes life time (by stages), 
the time of incubation of the disease, the size of the 
virtual world, the number of days of simulation, among 
others. The mosquitoes, in the initial state, are in the 
egg-stage, after completing this period, go through the 
larva-stage and then to pupa-stage and adult-stage. An 
adult mosquito will move through the virtual world in a 
maximum of 100 meters from the container where its 
birth, looking for a person to bite. Then, the mosquito, 
will explore for containers within the radius of action to 
deposit eggs.  
In Figure 1, shows the three types of agents in the 
model. The types of containers can be tires, vases, glass 
containers, plastic, or metal, among others. If an 
uninfected mosquito bites a person not infected, neither 
the person nor mosquito acquire any disease. If the 
person is infected and the mosquito is not infected, the 
person will infect the mosquito, and after the incubation 
period, when the mosquito bites a not infected person, 
this person, after an incubation period, will be infected. 
An infected mosquito will remain (all his life) infected, 
contributing to spread the disease. 

Figure 1: Model Agents and transmission cycles 

The model can be configured to define the productivity 
of the containers. This productivity will determine the 
amount of eggs that a mosquito can put in each 
container. The productivity is used in the model to 
compute the pupal index. The pupal index (or the larval 
index) are used to estimate the number of mosquitoes 
that will reach the adult stage. The model can be 
configured to use any of these indices, however, the 
choice of the pupal index is more accurate since the 
mortality rate of the pupal stage is much lower than that 
of the larval state. On the other hand, if the productivity 
of the containers is not considered, the amount of eggs 
placed in each container will transform in a 100% of 
adult mosquitoes (worst case).  

3.3. Experimental work and results 
To verify the results of the model developed on 
FLAME GPU with the one implemented on NetLogo, 
50 simulation runs were executed on both languages 
using the same number of individuals and model 
conditions. The number of pupae obtained in the 
experiments correspond to an initial setup of 300 
mosquitoes and a total of 100 simulated days; the 
number of pupae in the container was established after 
each run and then averaged for the 50 runs. The models 
consider two possible scenarios: In the first scenario, 
the container has a certain productivity percentage that 
represents the number of non-mature stages of the 
mosquito that can reach adulthood. The second scenario 
does not consider container productivity – it allows 
100% of the eggs laid in it to reach adulthood. Figure 1 
shows the average of pupae per container for the 50 
simulation runs carried out for each of the environments 
(bars) and their variance (*+ marks).  
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Figure 2: FLAME GPU vs. NetLogo. Average pupae 
per container for both models, and their variances 

The number of eggs that a mosquito lays in a given 
container is randomly generated. It can be clearly seen 
that the model implemented on FLAME GPU yields 
results that are similar to those obtained with NetLogo, 
despite the fact that both models use different 
probability distributions for the generation of random 
numbers. NetLogo generates random numbers based on 
the normal distribution, whereas FLAME GPU uses 
(after an analysis of equivalences) a uniform 
distribution. Based on the results obtained, it can be 
stated that the probability distributions used are 
equivalent and they have no effect on result. 
The variation in the number of pupae per container is 
reflected on the variance in each model. As it can be 
observed in Figure 2, the variances for both models 
converge. The peak observed with NetLogo in container 
8 shows results variability in relation to the mean 
expected value; however, the average values obtained 
are similar in both environments.  
All this confirms that the variability in the number of 
pupae per container is given by productivity, with 
randomness in the number of eggs that a mosquito can 
lay in each container being a contributing factor as well. 
To validate this, the percentages of pupae per container 
obtained with these models were compared with those 
resulting from the field study detailed in (Brito-Arduino 
2014). To obtain the percentage of pupae per container 
in (Brito-Arduino 2014), containers were inspected in 
the months during which mosquito eggs, larvae and 
pupae are produced, in consecutive seasons of vector 
proliferation, between 2002-2004. 
As it can be seen in Figure 3, the largest difference 
between the compared results is 3.9% in container 8, 
followed by container 7 with a difference of 1.4%. In all 
remaining containers, this difference is smaller than 1%. 
These results show that the model proposed is viable 
and capable of yielding results that will be similar to 
those of a real system (model of reference in the fig. 2). 

Figure 3: Comparison between pupal productivity in the 
containers of the real system (reference model) with the 
average percentage of pupae per container obtained 
with the model being proposed 

After this validation, a new experiment was carried out, 
this time to show the advantages of the use of GPU as 
platform to run the model. Figure 4 shows the results in 
relation to time measurements for runs done on both 
models (average for the 50 runs). The initial number of 
mosquitoes was changed, simulating a total of 80 days. 
As it can be seen, for 30,000 mosquitoes, the simulation 
without-productivity could not be run on NetLogo, 
since the model exceeded memory capacity (Java 
Virtual Machine limitations). 

Figure 4: Measured execution time (in seconds) for both 
simulation models, increasing the initial number of 
mosquitoes in the simulation 

It can be observed that the model developed on FLAME 
GPU, when the initial number of individuals is small, 
yields a higher execution time (considering container 
productivity) than that of the simulation run on 
NetLogo. In a GPU architecture, all cores must be 
working and if the number of thread is greater than the 
data to process, the GPU will distribute the work in 
order to avoid not idle threads. Therefore, the time-
increase in the FLAME GPU model occurs because the 
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total number of individuals in the simulation is reduced 
due to container productivity. In this case, the use of a 
GPU architecture is not recommended. However, when 
the initial number of mosquitoes is increased, execution 
time increases, yielding better results when container 
productivity is not considered. The limitations of the 
model developed on NetLogo is given by the limitations 
that are inherent to the environment itself, since it limits 
the number of agents that can be used to experiment 
and, consequently, only very small areas can be 
simulated.  
These results help consider the scalability of the model 
proposed on FLAME GPU in relation to the initial 
number of mosquitoes. Figure 5 shows how the models 
respond when container productivity percentage is 
changed, with a fixed initial number of mosquitoes (set 
to 3,000). To do this, the most productive containers (2, 
7 and 8) were selected. The result is the average of the 
times measured, in seconds, for 50 simulation runs in 
both models, with the following settings: considering 
original productivity, Case A (12.6%, 21.5% and 
32.9%, for containers 2, 7 and 8, respectively), 
increasing productivity for one container at a time 
(considering all possible combinations: Case B-1:50%, 
21.5% and 32.9%; Case B-2: 12.6%, 50% and 32.9 %; 
and Case B-3: 12.6%, 21.5% and 50%, for containers 2, 
7 and 8, respectively), increasing the productivity for 
two containers at the same time (with the following 
combinations: Case C-1: 50%, 50% and 32. 9%; Case 
C-2: 50%, 21.5% and 50%; Case C-3: 12.6%, 50% and 
50%, for the three containers mentioned above, as 
applicable), and lastly, Case D, where productivity was 
increased to 50% for all three containers 
simultaneously. 

Figure 5: Measured execution time (in seconds) for both 
simulation models, increasing the productivity of 
containers 2, 7 and 8 

Based on the runs carried out, the model on FLAME 
GPU is more stable in relation to changes in container 
productivity. The model on NetLogo presents an 
increase in the average simulation time (especially in 
these combinations: Case C-1: 12.6%, 50% and 50%, 
and Case C-2: 50%, 50% and 32.9%). Even though this 
increase is explained by container distribution in 
NetLogo, since container are close to each other and, as 

a consequence, they affect the number of pupae in other 
containers, this increase in simulation time is not 
proportional to the time measured for other types of 
containers.  

4. CONCLUSIONS
The agent-based model developed with FLAME GPU 
offers clear advantages over its predecessor, 
implemented on NetLogo. With FLAME GPU, the 
developer can focus entirely on modeling the problem 
instead of having to devote time and effort to implement 
a complex system on GPU.  
The implementation of an agent-based model on 
FLAME GPU to analyze how infectious diseases 
transmitted by Aedes aegypti spread exhibited an 
excellent behavior from the point of view of high-
performance simulation and was successfully validated 
against a real system. The results obtained yielded 
values that are very close to the actual numbers of 
pupae per container produced by Aedes aegypti. Being 
able to reduce simulation time allow running larger 
simulations, be it in relation to the area to be simulated 
or to the number of individuals included in the 
simulation.  
As open research lines and future work, the following 
topics of interest can be mentioned: a) assessing energy 
consumption for high-performance simulations on 
FLAME GPU; b) fine-tuning and validating the model 
using different geographical areas in Argentina; c) 
interactive visualization and adaptation to transform the 
model into an interactive tool for decision-making; d) 
migration to the Cloud to offer a high-performance 
simulation service to the scientific community.  
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