Nonparametric frequency polygon estimation for modeling input data

  • Stephen Hague  , 
  • b Simaan AbouRizk 
  •  
  • ab Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada
Cite as
Hague S., AbouRizk S. (2019). Nonparametric frequency polygon estimation for modeling input data. Proceedings of the 18th International Conference on Modelling and Applied Simulation (MAS 2019), pp. 159-165. DOI: https://doi.org/10.46354/i3m.2019.mas.020
 Download PDF

Abstract

To construct valid probability distributions solely from input data, this paper compares three nonparametric density estimators: (1) histograms, (2) Kernel Density Estimation, and (3) Frequency Polygon Estimation. A pseudocode is implemented, a practical example is illustrated, and the Simphony.NET simulation environment is used to fit the nonparametric frequency polygon to a set of data to recreate it as a posterior distribution via the Metropolis-Hastings algorithm.

References

  1. AbouRizk S., Hague S., Ekyalimpa R., Newstead S., 2016. Simphony: A next generation simulation modelling environment for the construction domain. Journal of Simulation, 10(3), 207–215.
  2. Cormen T.H., Leiserson C.E., Rivest R.L., Stein C., 2009. Introduction to algorithms. 3rd ed.
    Cambridge, MA: The MIT Press.
  3. Hastings W.K., 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1), 97–109.
  4. Ji W., AbouRizk S., 2017. Credible interval estimation for fraction nonconforming: analytical and
    numerical solutions. Automation in Construction, 83(2017), 56–67.
  5. MathWorks, Inc., 2019. MATLAB. Available from:
    https://www.mathworks.com/products/matlab.html?s_tid=hp_products_matlab [Accessed 03 April 2019].
  6. Metropolis N., Rosenbluth A.W., Rosenbluth M.N., Teller A.H., 1953. Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6), 1087–1092.
  7. Parzen E., 1962. On estimation of a probability density function and mode. The Annals of Mathematical Statistics 33(3), 1065–1076.
  8. R Core Team, 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Available from: https://www.Rproject.org [Accessed 03 April 2019].
  9. Rosenblatt, M., 1956. Remarks on some nonparametric estimates of a density function. The Annals of Mathematical Statistics, 27(3), 832–837.
  10. Scott D.W., 1979. On optimal and data-based histograms. Biometrika, 66(3), 605–610.
  11. Scott D.W., 1985. Frequency polygons: Theory and application. Journal of the American Statistical Association, 80(390), 348–354.
  12. Silverman B.W., 1986. Density estimation for statistics and data analysis. London, UK: Chapman & Hall.