
     
  

 

 

 

ABSTRACT 

To construct valid probability distributions solely from 
input data, this paper compares three nonparametric 
density estimators: (1) histograms, (2) Kernel Density 
Estimation, and (3) Frequency Polygon Estimation. A 
pseudocode is implemented, a practical example is 
illustrated, and the Simphony.NET simulation 
environment is used to fit the nonparametric frequency 
polygon to a set of data to recreate it as a posterior 
distribution via the Metropolis-Hastings algorithm. 

Keywords: nonparametric density estimation, input 
modeling, frequency polygon 

1. INTRODUCTION
Input modeling in simulation studies can be divided into 
two broad approaches. A classic approach, whereby 
standard statistical distributions are used to model 
underlying input data using a standard approach of:  

1) Selecting one of the standard statistical
distributions,

2) Parameterizing the distribution, (e.g., using the
method of moments or the method of
maximum likelihood),

3) Examining the goodness-of-fit (e.g., using a
standardized test such as the Kolmogorov-
Smirnov or Chi Square tests), and

4) Repeating as necessary until an acceptable fit
is found.

Another approach for input modeling is to use 
nonparametric modeling techniques to construct valid 
probability distributions directly by defining a 
probability density function (PDF) and cumulative 
distribution function (CDF) solely from input data. 
The advantages of the classical approach are numerous:  
● A wide array of probability distributions exists.
● Efficient algorithms for the evaluation of the PDF

and CDF, as well as the generation of random
deviates, are readily available for a variety of
platforms.

● Storage requirements are minimal as, once fit to the
data, only parameters are required for simulation.

● Many random processes are known to follow
certain distributions.

While these advantages have resulted in the widespread 
use of the classical approach for input modeling, certain 
datasets (e.g., multi-modal, Monte Carlo simulation 

outputs and Markov chain Monte Carlo (MCMC) 
algorithm outputs) are not well-suited for this approach. 
Multimodal data sets are a good example of what 
happens when classical approaches become limited. 
Consider the example adapted from Scott (1985), in 
which 400 samples are generated from the bimodal 
mixture density 

3
4
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(0.00, 1.00)

+
1
4
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(1.75, 0.25) 

(1) 

where 75% of the samples are generated from a normal 
distribution with a mean of 0 and a standard deviation 
of 1, and the remaining 25% of the samples are 
generated from a normal distribution with a mean of 
1.75 and a standard deviation of 0.25. A histogram and 
CDF of the samples versus the theoretical distribution 
are illustrated in Figure 1 (top left and right, 
respectively). 
The bimodal nature of the distribution renders the 
fitting of a standard probability distribution difficult in 
practice. Indeed, using the method of maximum 
likelihood, a triangular distribution with a low value of 
−2.9769, a high value of 2.4815, and a most likely value 
of 1.7790 was selected; see Figure 1 (bottom left and 
right). 
Despite the triangular distribution being selected as the 
best fit, the fit was rejected when tested using the 
Kolmogorov-Smirnov goodness-of-fit test (Table 1), 
demonstrating that the classical input modeling 
approach is not well-suited for modeling this dataset.   
Nonparametric input models are not limited in form the 
same way that classic statistical distributions are. The 
main limitations are related to 1) sampling during 
simulation studies from distributions that have been 
identified as nonparametric, and 2) using nonparametric 
models when data used for characterizing the input 
model are not sufficient to properly identify the 
underlying distribution of a given phenomenon (e.g. 
when limited data are collected to model machine 
breakdowns and have been known to follow an 
exponential distribution, but do not reveal such).   
In this paper we discuss how to address the first 
limitation. 
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2. NONPARAMETRIC DENSITY 
ESTIMATORS

Nonparametric density estimators construct a density 
function directly from a given set of samples 
{𝑥𝑥1 ,⋯ , 𝑥𝑥𝑛𝑛}. Three commonly applied methods are 
compared here, namely: the histogram, kernel density 
estimation, and the frequency polygon. 

2.1. Histograms 
The most basic nonparametric estimator is the 
histogram, which is constructed by choosing an origin, 
𝑥𝑥0, and a bin width of ℎ > 0. The bins of the histogram 
are the intervals 

[𝑥𝑥𝑜𝑜 + 𝑁𝑁ℎ, 𝑥𝑥0 + (𝑁𝑁 + 1)ℎ)   𝑁𝑁 ∈ 𝑍𝑍 (2) 

and the histogram itself is defined by 

𝑓𝑓(𝑥𝑥) =
1
𝑛𝑛ℎ

(𝑛𝑛𝑛𝑛𝑁𝑁𝑛𝑛𝑛𝑛𝑁𝑁 𝑁𝑁𝑓𝑓 𝑥𝑥𝑖𝑖 𝑖𝑖𝑛𝑛 𝑠𝑠𝑁𝑁𝑁𝑁𝑛𝑛 𝑛𝑛𝑖𝑖𝑛𝑛 𝑁𝑁𝑠𝑠 𝑥𝑥) (3) 

(Silverman 1986). The choice of bin width ℎ is 
subjective, greatly affecting the usefulness of the 
resulting histogram. Readers are referred to Scott (1979) 
for a detailed discussion of the challenges associated 
with the use of histograms. 

2.2. Kernel Density Estimation 
A well-known improvement of the histogram is the 
kernel density estimate, based on the concept of 
Rosenblatt (1956) and Parzen (1962). Intuitively, the 
kernel density estimate surrounds each data point in a 

sample with a small “bump” of density. The density 
estimate is the sum of these “bumps.” 
The kernel density estimator is defined as 

𝑓𝑓ℎ(𝑥𝑥) =
1
𝑛𝑛ℎ

�𝐾𝐾�
𝑥𝑥 − 𝑥𝑥𝑖𝑖
ℎ

�
𝑛𝑛

𝑖𝑖=1

 (4) 

where ℎ > 0 is a smoothing parameter—known as the 
bandwidth—and 𝐾𝐾 is a non-negative function—known 
as the kernel—that integrates to one. 
The bandwidth, ℎ, is typically chosen to be as small as 
the data allow. The kernel is commonly represented by 
the density function of a probability distribution, 
including any one of the following: 
● Uniform(-1, 1);
● Triangular(-1, 0, 1);
● Beta(2, 2, -1, 1), also referred to as Epanechnikov

or parabolic; or
● Normal(0, 1).
Using a bandwidth of ℎ = 0.12 and Normal(0, 1) as the 
kernel, the kernel density estimator for the data sampled 
from Equation 1 and the corresponding CDF are 
illustrated in Figure 2 (top left and right, respectively). 
In contrast to the triangular distribution selected using 
the classical approach, the CDF generated using the 
nonparametric kernel density approach resulted in an 
acceptable fit (Table 1) when examined using the 
Kolmogorov-Smirnov test. 
In cases where the kernel is a probability density, 
generation of a random deviate from the kernel density 
estimator is straightforward. First, a random deviate, 𝑛𝑛, 

Figure 1: Histograms (left) and Cumulative Distribution Functions (right) of Generated Samples versus Theoretical 
Distribution (top) and Triangular Distribution (bottom). 
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is generated from the kernel. Next, an element 𝑥𝑥𝑗𝑗 is 
randomly chosen from the sample set {𝑥𝑥1 ,⋯ , 𝑥𝑥𝑛𝑛}. Then 

ℎ𝑛𝑛 + 𝑥𝑥𝑗𝑗  (5) 

is a random deviate from the kernel density estimator. 

2.2.1. Limitations of Kernel Density 
Estimation 

Although kernel density estimation is available in a 
variety of software packages, including R (R Core Team 
2019) and MATLAB (MathWorks 2019), its 
functionality is limited in conditions where 𝑛𝑛 is large 
because (i) evaluation of the PDF and CDF becomes 
computationally intensive, as the kernel must be 
evaluated at every sample point, and (ii) the estimate 
requires considerable amounts of storage, as every 
sample point must be available.  

2.3. Frequency Polygon Estimation 
The frequency polygon can be thought of as a 
generalization of the triangular distribution. Its PDF is 
constructed “from a histogram by connecting with 
straight lines the mid-bin values of the histogram” 
(Scott 1985). Its CDF is then a piecewise quadratic 
function. 
As with the histogram, the frequency polygon is 
dependent on the choice of bin width (ℎ > 0). 

Scott (1985) notes that the bin width for an optimal 
frequency polygon will generally differ from that of the 
optimal histogram. 
Using a bin width of ℎ = 0.21, the frequency polygon 
for the data sampled from Equation 1 and the 
corresponding CDF are illustrated in Figure 2 (bottom 
left and right, respectively). As with the kernel density 
estimate, the Kolmogorov-Smirnov test determined that 
the CDF generated using the frequency polygon 
resulted in an acceptable fit (Table 1). 

Table 1: Results of the Kolmogorov-Smirnov Test 
Test Statistic Fit* 

Triangular Distribution 0.07501 Rejected 
Kernel Density Estimator 0.02861 Accepted 
Frequency Polygon 0.02353 Accepted 

*At significance α = 0.05, with critical value = 0.06791.

Once constructed, computation of the frequency 
polygon does not require the availability of the original 
data points, rendering it efficient even in conditions 
when n is large.  

3. PSEUDO CODE IMPLEMENTATION
For the pseudocode conventions used herein, see 
Cormen et al. (2009). From an implementation 
perspective, the frequency polygon consists of three 

Figure 2: Histograms (left) and Cumulative Distribution Functions (right) of Generated Samples versus the Kernel 
Density Estimator (top) and Frequency Polygon (bottom). 

Proc. of the Int. Conference on Modeling and Applied Simulation 2019,
ISBN 978-88-85741-29-4; Bruzzone, De Felice, Dias, Massei and Solis, Eds.

161



arrays: 

𝑋𝑋[0⋯𝑘𝑘 + 1] 
(6) 𝐿𝐿[0⋯𝑘𝑘 + 1] 

𝐶𝐶[0⋯𝑘𝑘 + 1] 

where 𝑘𝑘 is the number of bins in the original histogram. 
The array 𝑋𝑋 is defined by 

𝑋𝑋[𝑖𝑖] = mid-point of bin 𝑖𝑖       0 ≤ 𝑖𝑖 ≤ 𝑘𝑘 + 1 (7) 

the array L (the PDF values corresponding to the entries 
in 𝑋𝑋) is defined by 

𝐿𝐿[𝑖𝑖] = �
 0 if 𝑖𝑖 = 0
 mid-point value of bin 𝑖𝑖 if 1 ≤ 𝑖𝑖 ≤ 𝑘𝑘
 0 if 𝑖𝑖 = 𝑘𝑘 + 1

 (8) 

and the array 𝐶𝐶 (the CDF values corresponding to the 
entries in 𝑋𝑋) is defined recursively by setting 𝐶𝐶[0] = 0 
and 

𝐶𝐶[𝑖𝑖] = 𝐶𝐶[𝑖𝑖 − 1] +
ℎ
2

(𝐿𝐿[𝑖𝑖 − 1] + 𝐿𝐿[𝑖𝑖]) (9) 

for 𝑖𝑖 > 0, where ℎ is the bin width of the original 
histogram. 
Note that for persistence purposes, only arrays 𝑋𝑋 and 𝐿𝐿 
need to be stored, as 𝐶𝐶 can be reconstructed if 
necessary. 

3.1. Binary Search Procedure 
The existence of a procedure, termed BINARY-
SEARCH(𝑥𝑥,𝑇𝑇,𝑝𝑝, 𝑁𝑁), is then assumed. This procedure 
takes a key,  𝑥𝑥, together with a sorted subarray, 
𝑇𝑇[𝑝𝑝⋯𝑁𝑁], and returns one of the following: 

● If 𝑇𝑇[𝑝𝑝⋯𝑁𝑁] is empty (𝑁𝑁 < 𝑝𝑝), then the index 𝑝𝑝 is
returned.

● If 𝑥𝑥 ≤ 𝑇𝑇[𝑝𝑝] and, therefore, less than or equal to all
of the elements of 𝑇𝑇[𝑝𝑝⋯𝑁𝑁], then the index 𝑝𝑝 is
returned.

● If 𝑥𝑥 > 𝑇𝑇[𝑝𝑝], then the largest index 𝑞𝑞 in the range
𝑝𝑝 < 𝑞𝑞 ≤ 𝑁𝑁 + 1 is returned, such that 𝑇𝑇[𝑞𝑞 − 1] < 𝑥𝑥.

Example pseudocode for a binary search procedure is 
detailed in Cormen et al. (2009).  

3.2. Initialize Procedure 
In this procedure, the data are first binned, and the 
values for the three arrays are then constructed. 
Specifically, the INITIALIZE procedure initializes the 
𝑋𝑋, 𝐿𝐿, and 𝐶𝐶 arrays given the array of data 𝑇𝑇, to which 
the polygon is to be fit. 

INITIALIZE(𝑇𝑇,𝑋𝑋, 𝐿𝐿,𝐶𝐶) 
1 determine the number of bins (𝑘𝑘) 
2 initialize 𝑋𝑋[0⋯𝑘𝑘 + 1] as a new array 
3 initialize 𝐿𝐿[0⋯𝑘𝑘 + 1] as a new array 
4 initialize 𝐶𝐶[0⋯𝑘𝑘 + 1] as a new array 

5 𝑁𝑁𝑖𝑖𝑛𝑛 = 𝑁𝑁𝑖𝑖𝑛𝑛(𝑇𝑇) 
6 𝑁𝑁𝑁𝑁𝑥𝑥 = 𝑁𝑁𝑁𝑁𝑥𝑥(𝑇𝑇) 
7 ℎ = (𝑁𝑁𝑁𝑁𝑥𝑥 −𝑁𝑁𝑖𝑖𝑛𝑛)/𝑘𝑘 
8 for 𝑖𝑖 = 0 to 𝑇𝑇. 𝑁𝑁𝑛𝑛𝑛𝑛𝑙𝑙𝑙𝑙ℎ − 1 // bin the data 
9  𝑗𝑗 = 𝑁𝑁𝑖𝑖𝑛𝑛(⌊(𝑇𝑇[𝑖𝑖] −𝑁𝑁𝑖𝑖𝑛𝑛)/ℎ⌋ + 1, 𝑘𝑘) 

10  𝐿𝐿[𝑗𝑗] = 𝐿𝐿[𝑗𝑗] + 1 
11 for 𝑖𝑖 = 0 to 𝑘𝑘 + 1 // construct the arrays 
12  𝑋𝑋[𝑖𝑖] = 𝑁𝑁𝑖𝑖𝑛𝑛 + ℎ(𝑖𝑖 − 0.5) 
13  𝐿𝐿[𝑖𝑖] = 𝐿𝐿[𝑖𝑖]/𝑇𝑇. 𝑁𝑁𝑛𝑛𝑛𝑛𝑙𝑙𝑙𝑙ℎ/ℎ 
14  if 𝑖𝑖 > 0 
15  𝐶𝐶[𝑖𝑖] = 𝐶𝐶[𝑖𝑖 − 1] + ℎ(𝐿𝐿[𝑖𝑖 − 1] + 𝐿𝐿[𝑖𝑖])/2 

3.3. Slope Procedure 
The SLOPE procedure is a helper method that calculates 
the slope of the PDF line segment between 
𝑋𝑋[𝑖𝑖] and  𝑋𝑋[𝑖𝑖 + 1]. 

SLOPE(𝑋𝑋, 𝐿𝐿, 𝑖𝑖) 
1 return (𝐿𝐿[𝑖𝑖 + 1] − 𝐿𝐿[𝑖𝑖])/(𝑋𝑋 [𝑖𝑖 + 1] − 𝑋𝑋 [𝑖𝑖]) 

3.4. Probability-Density Procedure 
The PROBABILITY-DENSITY procedure evaluates the PDF 
of the frequency polygon for real argument, 𝑥𝑥. It begins 
by determining the largest index, 𝑖𝑖, such that 𝑋𝑋[𝑖𝑖] < 𝑥𝑥, 
and then uses linear interpolation to calculate the value 
of the PDF at 𝑥𝑥. 

PROBABILITY-DENSITY(𝑋𝑋, 𝐿𝐿, 𝑥𝑥) 
1 if 𝑥𝑥 ≤ 𝑋𝑋[0] or 𝑋𝑋[𝑋𝑋. 𝑁𝑁𝑛𝑛𝑛𝑛𝑙𝑙𝑙𝑙ℎ − 1] ≤ 𝑥𝑥 
2     return 0 
3 else 
4     𝑖𝑖 = BINARY-SEARCH(𝑥𝑥,𝑋𝑋, 0,𝑋𝑋. 𝑁𝑁𝑛𝑛𝑛𝑛𝑙𝑙𝑙𝑙ℎ − 1) − 1 
5     𝑁𝑁 = SLOPE(𝑋𝑋, 𝐿𝐿, 𝑖𝑖) 
6     ℎ = 𝑥𝑥 − 𝑋𝑋[𝑖𝑖]  
7     return 𝐿𝐿[𝑖𝑖] + 𝑁𝑁ℎ 

3.5. Cumulative-Distribution Procedure 
This procedure evaluates the CDF of the frequency 
polygon for real argument, 𝑥𝑥. It begins by determining 
the largest index, 𝑖𝑖, such that 𝑋𝑋[𝑖𝑖] < 𝑥𝑥. The procedure 
then adds the area of the trapezoid formed by the PDF 
between 𝑋𝑋[𝑖𝑖] and 𝑥𝑥 to the cached CDF value 𝐶𝐶[𝑖𝑖]. 

CUMULATIVE-DISTRIBUTION(𝑋𝑋, 𝐿𝐿,𝐶𝐶, 𝑥𝑥) 
1 if 𝑥𝑥 ≤ 𝑋𝑋[0] 
2     return 0 
3 elseif 𝑋𝑋[𝑋𝑋. 𝑁𝑁𝑛𝑛𝑛𝑛𝑙𝑙𝑙𝑙ℎ − 1] ≤ 𝑥𝑥 
4     return 1 
5 else 
6     𝑖𝑖 = BINARY-SEARCH(𝑥𝑥,𝑋𝑋, 0,𝑋𝑋. 𝑁𝑁𝑛𝑛𝑛𝑛𝑙𝑙𝑙𝑙ℎ − 1) − 1 
7     𝑁𝑁 = SLOPE(𝑋𝑋, 𝐿𝐿, 𝑖𝑖) 
8     ℎ = 𝑥𝑥 − 𝑋𝑋[𝑖𝑖] 
9     𝑦𝑦 = 𝐿𝐿[𝑖𝑖] + 𝑁𝑁ℎ // value of PDF at 𝑥𝑥 

10     return 𝐶𝐶[𝑖𝑖] + ℎ(𝐿𝐿[𝑖𝑖] + 𝑦𝑦)/2 

3.6. Quantile Procedure 
The QUANTILE procedure evaluates the inverse CDF 
(i.e., quantile function) of the frequency polygon for 
real argument 𝑦𝑦. It begins by determining the largest 
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index, 𝑖𝑖, such that 𝐶𝐶[𝑖𝑖] < 𝑦𝑦. If the slope of the PDF line 
segment between 𝑋𝑋[𝑖𝑖] and 𝑋𝑋[𝑖𝑖 + 1] is non-zero, then 
the quantile is the solution to a quadratic equation. 
Otherwise, linear interpolation is used to calculate the 
quantile. 

QUANTILE(𝑋𝑋, 𝐿𝐿,𝐶𝐶,𝑦𝑦) 
1 if 𝑦𝑦 < 0 or 1 < 𝑦𝑦 
2     return NaN 
3 elseif 𝑦𝑦 = 0 
4     return 𝑋𝑋[0] 
5 elseif 𝑦𝑦 = 1 
6     return 𝑋𝑋[𝑋𝑋. 𝑁𝑁𝑛𝑛𝑛𝑛𝑙𝑙𝑙𝑙ℎ– 1] 
7 else 
8     𝑖𝑖 = BINARY-SEARCH(𝑦𝑦,𝐶𝐶, 0,𝐶𝐶. 𝑁𝑁𝑛𝑛𝑛𝑛𝑙𝑙𝑙𝑙ℎ − 1) − 1 
9     𝑁𝑁 = SLOPE(𝑋𝑋, 𝐿𝐿, 𝑖𝑖) 

10     ℎ = 𝑦𝑦 − 𝐶𝐶[𝑖𝑖] 
11     if 𝑁𝑁 ≠ 0 // solve quadratic 
12  return 𝑋𝑋[𝑖𝑖] + (√(𝐿𝐿[𝑖𝑖]² + 2𝑁𝑁ℎ) − 𝐿𝐿[𝑖𝑖])/𝑁𝑁 
13     else // linear interpolation 
14  𝑁𝑁 = (𝑋𝑋[𝑖𝑖 + 1]–𝑋𝑋[𝑖𝑖])/(𝐶𝐶[𝑖𝑖 + 1]–𝐶𝐶[𝑖𝑖]) 
15  return 𝑋𝑋[𝑖𝑖] + 𝑁𝑁ℎ 

3.7. Sample Procedure 
Using the inverse transform method, this procedure 
generates a random deviate from the frequency polygon. 

SAMPLE(𝑋𝑋, 𝐿𝐿,𝐶𝐶) 
1 generate random number 𝑦𝑦 ∈ [0,1] 
2 return QUANTILE(𝑋𝑋, 𝐿𝐿,𝐶𝐶,𝑦𝑦) 

4. PRACTICAL EXAMPLE 
As discussed previously, the frequency polygon is best 
suited for density estimation of large data sets, such as 
those acquired from automated sensors, the outputs of 
Monte Carlo simulations (e.g., risk analyses), or outputs 
of Markov chain Monte Carlo (MCMC) algorithms 
(e.g., posterior distributions generated using Bayesian 
statistics). 
To demonstrate the functionality of the proposed 
approach, the frequency polygon method was applied to 
generate the CDF of the outputs of a MCMC algorithm 
obtained by Ji and AbouRizk (2017). In their study, Ji 
and AbouRizk (2017) modeled the number of 
nonconforming (i.e., failed) welds in a pipe weld 
inspection process using a binomial 
distribution 𝐵𝐵(𝑛𝑛,𝑝𝑝), where 𝑛𝑛 was the sample size, and 𝑝𝑝 
was the probability of nonconformance (i.e., weld 
failure). The prior distribution 𝑃𝑃(𝑝𝑝) of parameter 𝑝𝑝 was 
modeled as Beta(0.5, 0.5) and, after observing 𝐷𝐷 
nonconforming welds in 𝑛𝑛 inspections, the posterior 
distribution, 𝑃𝑃(𝑝𝑝|𝑋𝑋), was determined to be 

𝐵𝐵𝑛𝑛𝑙𝑙𝑁𝑁(𝐷𝐷 + 0.5,𝑛𝑛 − 𝐷𝐷 + 0.5) (10) 

In particular, if 𝑛𝑛 = 100 and 𝐷𝐷 = 10, the posterior 
distribution is 

𝐵𝐵𝑛𝑛𝑙𝑙𝑁𝑁(10.5, 90.5) (11) 

It is important to note that, in this particular case, a 
closed-form (i.e., analytical) solution for the posterior 
distribution exists; however, a closed-form solution is 
often difficult to derive or does not exist for many 
posterior distributions. Therefore, for the purposes of 
demonstrating the functionality of the frequency 
polygon approach, a numerical solution was instead 
determined using the Metropolis-Hastings algorithm—a 
common MCMC method (Metropolis et al. 1953, 
Hastings 1970)—together with the frequency polygon. 
From Bayes’ Theorem, the posterior distribution is 

𝑃𝑃(𝑋𝑋) =
𝐿𝐿(𝑋𝑋|𝑝𝑝)𝑃𝑃(𝑝𝑝)

𝑃𝑃(𝑋𝑋)
(12) 

where 𝐿𝐿(𝑋𝑋|𝑝𝑝) is the likelihood function. As 𝑃𝑃(𝑋𝑋) is 
independent of 𝑝𝑝, 

𝑃𝑃(𝑋𝑋) ∝ 𝐿𝐿(𝑋𝑋|𝑝𝑝)𝑃𝑃(𝑝𝑝) (13) 

The Metropolis-Hasting algorithm is then used to 
generate random samples from the probability 
distribution when a function is proportional to its PDF. 
For the distribution denoted in Equation (12), 

𝐿𝐿(𝑝𝑝) = 𝑝𝑝𝐷𝐷(1 − 𝑝𝑝)𝑛𝑛−𝐷𝐷 = 𝑝𝑝10(1 − 𝑝𝑝)90 (14) 

and 𝑃𝑃(𝑝𝑝) is the PDF of 𝐵𝐵𝑛𝑛𝑙𝑙𝑁𝑁(0.5, 0.5), therefore 

𝑃𝑃(𝑋𝑋) ∝ 𝑝𝑝10(1 − 𝑝𝑝)90
𝑝𝑝0.5(1 − 𝑝𝑝)0.5

𝐵𝐵𝑛𝑛𝑙𝑙𝑁𝑁(0.5, 0.5)
(15) 

Using Equation 17 and a starting 𝑝𝑝 value of 0.1, the 
Metropolis-Hastings algorithm was used to generate 
10,000 samples from the posterior distribution. A 
histogram consisting of 42 bins was constructed from 
the samples, and a frequency polygon was generated in 
Simphony.NET (AbouRizk et al. 2016) using the pseudo 
code approach detailed above. The resulting histogram 
and CDF are illustrated in Figures 3 and 4, respectively. 
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5. PRACTICAL EXAMPLE 

5. IMPLEMENTATION IN SIMPHONY.NET 
The frequency polygon has been implemented 
within the Simphony.NET simulation environment 
(AbouRizk et al. 2016). Simphony.NET is a 
modeling environment comprised of simulation 
services and a modeling user interface. Based on 
modular and hierarchical concepts, Simphony.NET 
provides a medium for developing and deploying 
simulation modeling templates that are general 
purpose by design, while featuring a number of 
special purposes templates.  

The Simphony.NET environment now supports the 
fitting a frequency polygon to a set of data and the 
creation of a frequency polygon as a posterior 
distribution via the Metropolis-Hastings algorithm. A 
screenshot of the output results of the frequency 
polygon approach in Simphony.NET are illustrated in 
Figure 5. 

6. CONCLUSIONS
The paper demonstrates how to implement 
nonparametric input modeling techniques to augment 
classic methods during simulation studies. The 
approach covers defining a probability density function 

Figure 5: Output Results of the Implementation of the Frequency Polygon Pseudocode Approach in Simphony.NET. 

Figure 3: Histogram of Samples Generated using an 
MCMC-Based Method versus the Frequency Polygon 

Figure 4: Cumulative Distribution Function of 
Theoretical Distribution versus the Frequency 
Polygon 
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from random data and estimating both the cumulative 
density function and the inverse distribution. The latter 
facilitates sampling during simulation. The 
implementation was summarized in pseudo code to 
facilitate its use by others within their own systems. 
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