
ABSTRACT
This paper extends the stack validation algorithm in a
probabilistic way. In other words, we introduce a new
model for stack validation when the production parame-
ters are random variables and the result is compared with
a confidence interval. The major outcome of this simpli-
fied probabilistic model is to determine random variables
merely by mean, variance, and skewness. This straight-
forwardly enables some direct, fast and consistent cal-
culations by using certain properties of these moments.

Keywords: categoric simulation of production flow,
signal, stochastic processing times, probabilistic stack
validation

1. INTRODUCTION
In the industrial factory planning practice; planning ca-
pacity, material in volatile or changing demand situations
often require high capacities and also cause material plan
instability for both suppliers and factories. The decisions
of the planner can be based onmany factors such as period
machine capacity, profit margins, holding costs, etc. One
of the biggest challenges of any planner is dealing with
the level of capacity (input, output, or stack) during any
step of the production flow. At this point, standard and
traditional deterministic methods are of little use. How-
ever, probabilistic and statistical methods come into play
for predicting the underlying risk of capacity and material
in planning, in advance.

The category theoretical description and simulation of
production flow is developed in Kruml and Paseka (2018)
by introducing the signal model. This model is perfectly
suitable for modeling the production in an algebraic point
of view, which ismass and regular on processes. But these
processes do not have to be synchronized. That is, such
processes can operate under different speeds and batch
sizes, and we need high capacity stacks to eliminate such
differences. Every stack is filled by outputs of preceding
processes and drawn by inputs of the next processes. We
refer signals for these time functions. In regular mass
production, signals can be effectively encoded by formal
words where we write x for a produced unit, o for a time
unit, and powers to mean lengths and repetitions. For in-
stance, the word (o5x)10o30 stands for the signal A (Fig. 2)
where production cycle o5x comprises cycle time 5 and
1 produced unit, is repeated 10 times, and followed by

the inactivity of time 30. Expansion of the word draws a
walk in the mass-time, where x is a move in mass and o
is a move in time.

Such a decomposition and composition of signals is
a part of general principles formulated for all aspects of
the production flow and formalized by terms of category
theory, see Coecke and Paquette (2011). Moreover, we
know that a production flow can be modeled within three
modes – time, space (network), and mass (material and
products). The composition principle enables us to figure
out the flow as a tree-organized collection of subordinated
jobs and solve them independently, simultaneously, and
with predefined accuracy.

However, the crucial problem in our methodology is
the behavior of the stack. The flow is always considered
to be valid regarding the stack, in the given simulation
interval, and the stock needs to be kept balanced within
the lower and upper bounds of the stack. The stock func-
tion is defined as a sum of all input and output signals.
Its evolution could look chaotic and computationally hard
for a complete determination. Instead of this, the stack
validation algorithm (SVA) is developed based on tree
organization of signals. The algorithm starts with rough
approximations on large time intervals and continues with
detailed approximations only on smaller parts where the
rougher methods fail to decide the stack validity. In other
words, it uses the recursive search of critical moments
and avoids detailed inspection elsewhere that makes it
lazy and effective.

2. STATEMENT OF THE PROBLEM
In this paper, we skip the process of recursion and mainly
focus on the inner step of SVA. Here, we have the sig-
nals (Fig. 1) with lower and upper linear approximations,
and we also use their sums as approximations of the sum
signal. This follows a discussion of whether the approx-
imations overlap the bounds. We extend this idea to the
probabilistic level and describe an analogous step of prob-
abilistic stack validation algorithm (PSVA). The recursive
part of the algorithm remains similar to that of SVA.

Afterward, we propose to use our signal model to in-
corporate the probabilistic and statistical issues into the
planning process. To our knowledge, no similar formula-
tion exists in the literature, which is directly applicable to
the planning situation discussed above.

Such modeling situation results in stochastic process-
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ing times, and it is the typical one where queueing effects
Manitz (2008) or stochastic-flow network models Fion-
della, Lin and Chang (2015) occur. Nevertheless, we can
still use the regularity of processes.

time

mass

Figure 1: Stack validation

The lines enveloping the signal provide upper and lower
approximations, which are much easier for calculations.
Crossings with the upper bound (black) and the lower
bound (red) of a stack indicate states of SVA (here we
assume that there is no other signal affecting the stack).
The green interval is surely correct, the black interval is
surely incorrect (overfill), and the brown interval will be
inspected with higher accuracy in a further recursion step.

We also expect that our probabilistic model could be
useful also for any other composed probability systems
including job production or project management – e.g.,
the network analysis technique PERT (see Pohl and Chap-
man (1987); Heagney (2016)).

This paper addresses the issues given above andmakes
the following contributions:

1. We extend the signal model from Kruml and Paseka
(2018) to a probabilistic version without substantial
changes.

2. Our approach can check the behavior of the whole
system at each stack separately and hence to provide
validity tests in a fast and reliable manner.

3. The method does not use the experimental approach
(Monte Carlo simulation). Predictions are made by
direct calculations based on fast transformations be-
tween probabilistic moments and quantiles.

3. STOCHASTIC SIGNALS
A geometric interpretation of the production flow is in-
troduced in Kruml and Paseka (2018) through a certain
surface in a space-time-mass. The model describes an
ideal type of production with no errors or uncertainty.
Here, we would like to describe a probabilistic extension
of that model in the sense that any flow parameters could
be considered as random variables. In this case, the re-
sulting flow should not be imagined as a surface anymore
but as a “fuzzy cloud” inside the space-time-mass – i.e.,
representing the density of possible runs of a given plan.
We know that random effects are often dependent. For
instance, an error of one process can affect the behavior
of other processes or waste in series due to inappropriate
machine setting. However, we suppose that many types
of dependencies vanish when the random effects are re-
solved to elementary ones and positioned to appropriate
segments in the model hierarchy.

Among other possibilities, the flow can be validated
by the inspection of stacks. Namely, we test whether a
stack keeps acceptable storage of produced units all the
time, so it is never overfilled or lacked concerning defined
bounds. We call this a signal model because the stack val-
idation algorithm evaluates the input and output signals,
i.e., time functions representing mass processed in time.
The signal can be defined as a formal word and has a
natural breakdown structure of subwords or subsignals.
The main advantage of the model is that mass production
is highly regular and repetitive. Moreover, the repetitions
can be effectively encoded as powers in words. We claim
that a large class of random effects can bemodeledmerely
by adjusting these powers (Fig. 3, Fig. 4 and Fig. 5). The
idea is quite general and also could be useful in plan-
ning or simulation of less regular applications, e.g., job
production or project management.

time

mass A

(o5x)10o30

Figure 2: Signal A

The letters x, o mean mass (product) and time (delay)
units, respectively. Signal A models a machine working
in a regular regime that produces 1 mass unit per 5 time
units. It totally produces 10 units and stops for 30 units.

time

mass B

(oV x)10o80−10V

Figure 3: Signal B

Signal B is affected by irregularity in cycle time which is
defined as random variable V .

time

mass C

(o5x)W oX (o5x)10−W o30−X

Figure 4: Signal C

In signal C, the machine works again in regular cycle time
but the season is randomly divided to two parts by some
stoppage. Here, we have two random variables: W repre-
sents the number of repetitions before the stoppage, and
X is the time of the stoppage.

time

mass D

?
(o5xZ )Y (o5x)10−Yo30

Figure 5: Signal D
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Finally, signal D represents a mixture of two scenarios: in
the first one the machine works well, in the second one the
season starts with Y repetitions producing waste (and no
products x). A scenario is selected by a random variable
Z with Bernoulli distribution (see Ross (2014)) – the first
scenario is performed if Z takes value 1, the second one
if Z takes 0. All examples can be combined.

4. PROBABILISTIC STACK VALIDATION
The stack validation algorithm (SVA) respects the break-
down tree hierarchy of signals and iteratively search only
on intervals where rough approximations do not provide
decisive answers. This approach makes it more effective
than straightforward simulation methods, e.g., discrete-
time simulation. When we like to extend the algorithm
to the probabilistic environment, we must reformulate the
statement of the problem as well as to develop a fast cal-
culus for manipulations with random variables.

First of all, we give up any attempt to predict “global
probability” that a given plan is capable. This is a quite
hard aggregation problem where all dependencies, hid-
den decisions, objective and subjective preferences should
come into account. Instead of this, we still assume that the
plan evolves by small improvements made on particular
processes, jobs, and orders. The system communicates
with the planner by predicting whether affected stacks
perform well until the performance is considered satis-
factory. But such a conclusion is completely under the
responsibility of the planner. Wemust emphasize this fact
because the probabilistic results are hardly 100% decisive
and the planner should anticipate results like “the stack
will be overfilled with a probability smaller than 5%”.

According to the philosophy that “makes the planner
responsible for everything”, we let him/her set these con-
fidence intervals for each stack separately and provide the
validation concerning them. This can reflect thinking in a
sense “Overfill of that stack would mean a small temporal
disorder next to the cutter but this happens often, and
nobody bothers” or “Shortage of that stack is unpleasant,
but I have some extra reserves of material to supply”.

time

mass

Q 1
4

Q 1
2

Q 3
4

Q
1 4

Q
1 2

Q
3 4

Figure 6: “Fuzzy cloud” representing a density of
possible runs of a given plan

The “cloud” in Fig. 6 is drawn by multiple runs of a prob-
abilistic process. The first, second, and third quartile is
depicted by a cyan, blue, and magenta lines, respectively
(From the mass point of view, the order is reversed).

Our main goal is to find reliable approximations of
the flow such that we would certainly know that several

possible runs out of such range are less than a given per-
centage. In other words, we compare bounds of the stack
with given quantiles of (random and time-varying) stock.
Since we consider only one-way transitions in the pro-
duction network (two-ways transitions can be separated
into two channels), the mass development of any signal
has an obvious orientation (positive on inputs, negative
on outputs). Of course, time only moves in a positive
direction. Thanks to this, we find obvious but important
fact about the flow: For a given state (t, N) (i.e., the event
that Nth unit passed in time t) there is the same number
of runs “on the right” (those which reach N after time t)
and of runs “below” (those which reach N before time
t). One can consider the flow as a collection of random
walks or an analog of two-dimensional distribution. In
this formalism, the above fact states that the marginal dis-
tributions along time and the marginal distributions along
mass share quantiles, i.e., distribution of mass in time t
reach in value N the same quantile like distribution of
time in mass N in value t (Fig. 6 and Fig. 8). (To be
more precise, for a quantile Qp we should rather speak
about the complementary quantile Q1−p because of the
orientation of the time and mass axes.)

time

mass

Figure 7: Upper and lower approximations of a quartile

By theory, the quartiles evolve as sequences linearly de-
pending on n and

√
n where n is the number of repeti-

tions. Thus, they have upper and lower approximations
by certain quadratic curves. These can be interpreted as
quartiles of a continuous random process.

time

mass

Figure 8: Swap of axes (from time to mass)

In Fig. 8 quartiles for fixed mass (gray) yield quartiles for
fixed time (black). Consequently, we use them to estimate
the vertical distribution.

Of course, this is not the case of densities – they are
partial derivations of the cumulative density functions,
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and there is no reason to be equal. Moreover, the two
orthogonal distributions may have quite different shape
properties. For example, if the signal is random in cycle
time and we assume that all repetitions have the same
distribution and are independent, then (after quite a small
number of repetitions) the sum of times tends to a nor-
mal distribution, regardless of the type of distribution on
one cycle (central limit theorem). On the other hand, the
corresponding orthogonal distribution need not be sym-
metrical even in a large number of repetitions – we can
see that there is more pointed density for small N and
less pointed for large N because later units are produced
with higher dispersion in time. Thus, the skewness of the
distribution will be positive.

The described swap of axes enables us to study the
mass (vertical) distribution using quantiles of time (hori-
zontal) distributions. No matter which distributions enter
the validation and how they are combined, we use the idea
at least for the end of each iteration step in the SVA be-
cause we compare the mass distribution with the bounds
of the stack. But it is also important for parallel summa-
tion of more than one random signals, which is a typical
situation occurring at stacks.

The swap is known for certain classes of distributions.
Namely, Poisson distribution is, in this sense, inverse to
exponential distribution and normal distribution to a cer-
tain type of generalized inverse Gauss distribution. Our
method is not precise, but it is simple and general.

5. L-ESTIMATORS AND MOMENTS
In practice, the random variables presented in the flow
model are obtained from statistical analysis of real pro-
duction datasets or guesses resulting from long-term ex-
perience. In many cases, the planner is not an expert
neither on probability theory nor on mathematical statis-
tics. Therefore he/she will be only able to use simple
methods for the probability distribution.

A popular method is the 3-point estimation where just
minimum, middle, and maximum values of the distribu-
tion are considered. The middle value is interpreted as
a location parameter depending on context or planner’s
preferences; it can be mean, median or mode of the dis-
tribution. The minimum and maximum points determine
variability. Since the minimum and maximum are very
inclinable to chance, they can be replaced by much more
robust quartiles Q1 and Q3, namely the quantiles of 25%
and 75%. When we adopt the median Q2 for the role of
middle value, wemodel the distribution by triple quartiles
(Q1,Q2,Q3), that is, the values obtained by dividing the
ordered dataset to four quarters. Similar approaches are
examined in various works such as Bland (2015); Wan,
Wang, Liu and Tong (2014) and also Hozo, Djulbegovic
and Hozo (2005).

Important characteristics of the distribution can be
guessed by the appropriate L-estimators. Namely, we
will use the following three ones:

• Q1 +Q3
2 . . . midhinge, location measure, replace-

ment for mean,

• Q3−Q1 . . . interquartile range, scale or dispersion
measure, replacement for standard deviation,

• Q1 +Q3
2 −Q2 . . . difference of midhinge and me-

dian, skewness measure.
Such simplifications could be very inaccurate in many

situations, e.g., when the modeled distribution is discrete
or of exceptional shape. (A deterrent example is the
Bernoulli distribution Z from signal D in Fig. 5.) Nev-
ertheless, our experiments with many natural types of
continuous unimodal distribution demonstrated that the
L-estimators are in a surprisingly good coincidence with
moments, and they provide an elementary calculus for
summation of random variables. Notice that the transfor-
mation fromquartiles to L-estimators is reversible. Hence
one can also recover the quartiles from the L-estimators.
(This is also the reason why we work only with a triple
of quartiles instead of popular five-point or seven-point
cases. Here the transformation would be more accurate
but not reversible.) Thanks to this, we can also invert the
procedure for special distributions including the discrete
ones – we first find the moments by precise mathemat-
ics and then get virtual quartiles by the inverse transfor-
mation. The remaining step converting moments to the
L-estimators is a linear adjustment of each of the mo-
ments and can be done concerning an assumed kind of
distribution. That is, one can create a “dictionary” of
frequently used distributions with specified values of the
coefficients. In this manner, we can handle any distribu-
tion in two equivalent ways – either by the three quartiles
(regardless they have the correct meaning, or they are just
“ghosts”) or by three moments, namely mean, variance,
and skewness. The former triple is needed for the swap of
axes, the later for a quick and stable summation of random
variables which is based on the well-known additivity of
the three moments (see Renyi (2007)):

Theorem 1 Let X1, X2 be two independent random vari-
ables with the triples (µ1, σ

2
1 , τ1), (µ2, σ

2
2 , τ2) of moments,

i.e., mean, variance, and third central moment. Let
X = X1 + X2. Then

µ = µ1 + µ2, σ2 = σ2
1 + σ

2
2 , τ = τ1 + τ2

are moments of the random variable X .
In particular, let Xi, i = 1, . . . n be independent iden-

tically distributed random variables, and define:

X =
n∑
i=1

Xi .

If the fixed triple (µ1, σ
2
1 , τ1) will be the moment triple of

any Xi , then

µ = nµ1, σ2 = nσ2
1 , τ = nτ1

are moments of the random variable X .

For a random variable X with a moment triple (µ, σ2, τ)
we define γ = τ/σ2. We can think of γ as a param-
eter for skewness. If X1, X2 are independent random
variables with moments triples (µ1, σ

2
1 , τ1), (µ2, σ

2
2 , τ2),
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γ1 = τ1/σ
2
1 , γ2 = τ2/σ

2
2 and X = X1 + X2 then we obtain

the parameter γ for X as

γ =
γ1σ

2
1 + γ2σ

2
2

σ2
1 + σ

2
2

.

The midhinge is a direct guess of the mean and thus
we will also denote it by µ̂. The interquartile range is
assumed to be a multiple of the standard deviation, i.e.,
the square root of the variance. To make the use more
intuitive, we will consider half of the interquartile range
and denote it by σ̂. Finally, the difference between mid-
hinge and median will be denoted by γ̂. The parameter γ
is assumed to be proportional to the scale in the sense that
third central moment τ linearly depends on γσ2. This
property yields direct formulas for the moments. Hence
for a prediction of a sum of two independent random
variables we will use the following rules:

µ̂ = µ̂1 + µ̂2, σ̂ =
√
σ̂2

1 + σ̂
2
2 , γ̂ =

γ̂1σ̂
2
1 + γ̂2σ̂

2
2

σ̂2
1 + σ̂

2
2

. (∗)

Consequently, the sum of n independent identically dis-
tributed random variables will be predicted as follows:

µ̂ = nµ̂1, σ̂ =
√

nσ̂1, γ̂ = γ̂1.

Let us recall that

µ̂ =
Q1 +Q3

2
, σ̂ =

Q3 −Q1
2

, γ̂ =
Q1 +Q3

2
−Q2,

and derive the inverse transform

Q1 = µ̂ − σ̂, Q2 = µ̂ − γ̂, Q3 = µ̂ + σ̂.

6. EXAMPLE

To demonstrate the model we consider a stack with the
input signal s1 = o20(xoY )120 and the output signal
s2 = o25(x6oZ )20 where Y, Z both have triangular dis-
tributions with min/max/mode values 0/1/0.5 or 0/6/3,
respectively. This yields quartiles

Q11 =
1

2
√

2
≈ 0.354, Q12 =

1
2
,

Q13 = 1 −
1

2
√

2
≈ 0.656, Q21 =

3
√

2
≈ 2.121,

Q22 = 3, Q23 = 6 −
3
√

2
≈ 3.879,

and L-estimators

µ̂1 = 0.5, σ̂1 = 0.156, γ̂1 = 0,
µ̂2 = 3, σ̂2 = 0.879, γ̂2 = 0.

Let us look at the finishing time of s1. The model

predicts that the quartiles evolve to

Q11,13 = 20 + 120µ̂1 ∓
√

120σ̂1 ≈ 20 + 60 ∓ 2.236
= 77.764, 82.236,

Q12 = 20 + 120µ̂1 − γ̂1 = 20 + 60 + 0 = 80.

Five simulations, each with 1000 runs, provided datasets
with:

experiment Q11 Q12 Q13
1 78.445 79.916 81.545
2 78.464 79.911 81.222
3 78.436 80.086 81.938
4 78.468 79.993 81.689
5 78.537 79.944 81.511

The result has a significantly different interquartile range
(or standard deviation). This difference is caused by the
fact that one cycle distribution is assumed to be triangular
while its 120th power is almost normal. But ratio σ̂/σ
is about 0.717 for triangular distribution while 0.675 for
normal distribution. When the difference is multiplied by
√

120, we get an error 0.470 which agrees with the differ-
ence between modeled values and experimental results.
(We can conclude from this that the input quartiles of cy-
cle times should be rather obtained from repeated cycles
or large datasets than from a single cycle and triangular
expectation.)

Now let us look on stock at time 40 for both signals
and calculate quartiles in the mass axis. The quartile
guesses appear as solution of equations, cf. Fig. 8:

µ̂i
Qi1
ni
+ σ̂i

√
Qi1
ni
= 40 − ti,

µ̂i
Qi2
ni
− γ̂i = 40 − ti,

µ̂i
Qi1
ni
− σ̂i

√
Qi1
ni
= 40 − ti .

where i = 1, 2 is an index of signal, n1 = 1, n2 = 6 the
batch sizes, and t1 = 20, t2 = 25 the start times.

This yields

Q11 ≈ 38.190, Q12 = 40, Q13 ≈ 41.896,
Q21 ≈ 26.319, Q22 = 30, Q23 ≈ 34.195,

hence

µ̂1 ≈ 40.043, σ̂1 ≈ 1.853, γ̂1 ≈ 0.043,
µ̂2 ≈ 30.257, σ̂2 ≈ 3.938, γ̂2 ≈ 0.257.

For the subtraction signal s = s1 − s2 we get from (*)

µ̂ = 9.786, σ̂ ≈ 4.352, γ̂ ≈ −0.203,

and by transforming it back

Q1 ≈ 5.434, Q2 ≈ 9.989, Q3 ≈ 14.138.

Notice now that PSVA still works with envelopes of
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signals where the quartile guesses are shifted up and down
by constants depending on the stair step (batch size) of
each of signals. Here the upper guess should be shifted
by 1 (batch of positive s1) and the lower guess by 6 (batch
of negative s2).

Again, from experiments of 1000 runs we get datasets

experiment Q11 Q12 Q13
1 3 8 12
2 3 8 11
3 3 8 11
4 3 7 11
5 3 8 12

which are close to the centre of expected signal range,
and display expected variance and skewness. (The mass
distribution represents stored products, thus it is discrete
with support on integers.)

The model provided an excellent performance also for
other settings.

7. APPROXIMATING CURVES
Like in the ideal production SVA, we need to determine
intervals where stock is in given bounds and where it is
not. The PSVA assumes that the enveloping approxima-
tions of a certain quantile are always quadratic curves of
form at + b

√
t + c + d. In the simplest case of one signal

of a regularly working process, this has an obvious inter-
pretation: a is mean production speed, b, c are related to
standard deviation, b is positive for Q3 and negative for
Q1, and d comprises actual stock at the beginning of the
tested time interval and eventually the skew component
γ. Since the Q1 and Q3 differ only on the sign of b, the
function (Q3 − Q1)

2/4 (an L-estimator corresponding to
variance) is only a linear function of time. Summing of
such signals would be very simple because we could use
the formulas (*) to calculate the coefficients a, b, c, d.

But in general situations, there is no relation between
the values b forQ1 andQ3. For example, when the process
start is random, part of runs already draws the parabolic
shape of Q3, i.e., the parameter b is non-zero, while the
other runs still “do nothing” and the function Q1 is con-
stant with b = 0 on the initial interval of production. Evo-
lution of L-estimators is non-linear, and summed signals
could have complicated formulas for their exact values.

However, we still consider that the L-estimators are
replacing mean, variance, and the third central moment
and that they evolve linearly. This yields formulas

µ̂ = (1 − t)µ̂0 + t µ̂1,

σ̂2 = (1 − t)σ̂2
0 + tσ̂2

1 ,

γ̂ =
(1 − t)γ̂0σ̂

2
0 + tγ̂1σ̂

2
1

(1 − t)σ̂2
0 + tσ̂2

1

where the index 0 stands for begining of a time interval,
index 1 for its end, and t ∈ [0, 1]. Thus we extrapolate the
values of L-estimators to any time just from the values at
some critical points. It is reasonable to consider all the
points where some of the quartile curves are broken.

The assumption is correct for the central part of the
process activity but not exact outside it, as the Fig. 9
shows.

time

mass

A B C D E F G
Figure 9: Evolution of L-estimators

In A, there is no activity. In B, the process may have
started or not yet. In C, the process surely works in one
regime. In D, the process still works in the first regime or
perhaps it has switched to the second (faster) regime. In
E, the process surely works in the second regime. In F, the
process still works in the second regime, or it has already
stopped. In G, the process has undoubtedly finished. The
periods A, C, E, and G are parametrized exactly, the peri-
ods B, D, F are simplified. However, the error caused by
this assumption is relatively small concerning the error
caused by the simplified calculus of L-estimators.

Another objection to the model is that it does not as-
sume that the process could start sooner than Q1 or finish
later than Q3, but both cases may quickly happen. Such
a problem can be fixed by adding two more parameters
Q0 and Q4 according to Tukey (see Tukey (1977)), repre-
senting reasonable bounds of the distribution. They could
be used in situations when Q1 = Q2 = Q3, that is, when
the distribution seems to be trivial (and the process to be
deterministic) but we know that it is not. These Q0 and
Q4 could be interpreted as “0th” and “4th” quartile and
identified with µ̂ ± 3σ̂. Then there are analogous trans-
formation rules between quartiles and L-estimators and
Q0, and Q4 hold the quadratic nature like Q1 and Q3.

Anyway, the proposed model approximates the prob-
ability density of a signal at all points by simply
parametrized curves. Both quartiles and L-estimators
have quadratic parametrization, and hence the same is
true for sums of signals. The validity of a stack con-
cerning a given confidence interval is then answered by
solving an appropriate quadratic equation.

8. CONCLUSION
The described method may resemble a Fourier transform
of functions. Summation of general random variables can
be provided by discrete or continuous convolution. How-
ever, this can be very difficult or at least computationally
hard. Instead of this, we parametrize the variables just by
the three quartiles, convert them to certain L-estimators
and work with those as with moments. Assuming the
additivity, we quickly get L-estimators of the sum and
convert them back to quartiles (see Fig. 10).
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The quartile parametrization enables to swap between
the time and mass axes easily. The only thing we need
to do is to find the intersections of quartile curves with a
line. Since mean evolves linearly and the skew parame-
ter is constant for a repetitive process, we consider such
parametrization for a general description of all approxi-
mations. Consequently, the crossing points can be found
as solutions of certain linear or quadratic equations. The
result is converted back to any of the forms and used for
the next operation or to recover the resulting distribution.

Using the method, we can extend SVA to the prob-
abilistic environment without substantial changes in its
general principles and reasoning. The derived calculus
is rough and simplified but still robust and highly effec-
tive for repetitive processes. It completely avoids the
traditional Monte Carlo approach in simulation. Our ex-
periments show that the proposed model is not only quick
but also very realistic and consistent.

From another point of view, we know from Kruml
and Paseka (2018) that the production flow without error
or uncertainty forms a monoidal category structure with
tensor product (Coecke and Paquette (2011)). In this
paper, we now replace the certainty with uncertainty and
some probabilistic errors. On the other hand, it is well
known that there is a close relationship between fuzzy sets
and probability theory; see Dubois, Nguyen and Prade
(2000) for more details. Consequently, there might be
again a monoidal category structure somehow related to
fuzzy categories (Walker (2004)). In such a case, it is an
interesting question how fuzzy categories and monoidal
categories play a role together to model this structure in
the light of category theory.
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Figure 10: Computational strategy
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