Modeling and analysis of the impact of texturing angles on doping profiles in ion implanted N-type solar cells

  • Abderrazzak El Boukili  
  • aAl Akhawayn University in Ifrane, Morocco
Cite as
El Boukili A. (2019). Modeling and analysis of the impact of texturing angles on doping profiles in ion implanted N-type solar cells. Proceedings of the 7th International Workshop on Simulation for Energy, Sustainable Development & Environment (SESDE 2019), pp. 1-6. DOI: https://doi.org/10.46354/i3m.2019.sesde.001

Abstract

The aim of this paper is to develop an accurate model to study the impact of texturing angles on doping profiles in ion implanted solar cells. This study will help designers and manufacturers choose an optimal angle in texturing the surfaces of innovative solar cells. Using an optimal texturing angle will improve the performance of solar cells. Randomly chosen texturing angles may decrease the absorption of the sun light or introduce excessive defects as clustering or channeling. These defects will represent recombination centers for active electrons and holes. This will contribute seriously to the loss of the active carriers and then to the loss of solar cell efficiency. This loss is known as a recombination loss. This loss alone may reduce the efficiency of a solar cell by 20%. Numerical results showing the effects of texturing angles on doping profiles will be presented, analyzed, and validated.

References

  1. Bothe, K., Sinton, R., Schmidt, J., 2005. Fundamental boron-oxygen-related carrier lifetime limit in mono- and multicrystalline silicon. Progress in Photovoltaics Research and Applications 13(4):287 – 296.
  2. Ho, W., Huang, Y., Hsu, W., Chen, Y., Liu, C., 2011. Ion implanted boron emitter N-silicon solar cells with wet oxide passivation. 37th IEEE Photovoltaic Specialists Conference, Seattle, WDC, USA.
  3. Fabian, K., Tobias, O., Robby, P., Rolf, B., 2011. Analyzing the recombination current densities in
    industrial like n-type PERT solar cells exceeding 20% efficiency. 23rd IEEE Photovoltaic Specialists Conference, Seattle, WDC, USA.
  4. Kveder, V., Kittler, M., Schroter, W., 2001. Recombination activity of contaminated dislocations in silicon: A model describing electron-beam-induced contrast behavior. Physics Review, B 63, 115208.
  5. Benick, J., Hoew, B., Van, M., Kessels, O., Schultz, O., Glunz, W., 2008. High efficiency n-type si solar cells on alo-passivated boron emitters. Applied Physics Letters, Vol. 92, pp. 253504.
  6. Benick, J., Hoew, B., Dingemans, G., Richter, A., Hermle, M., Glunz, W., 2009. High efficiency ntype si solar cells with front side boron emitter. Proceedings of the 24th European Photovoltaic Solar Energy Conference, pp. 863-870.
  7. Ohrdes, T., Steingrube, S., Wagner, H., Zechner, C., Letay, G., Chen, R., Dunham, S., Altermatt, P., 2011. Solar cell emitter design with pv-tailored implantation. Energy Procedia, Vol., 8, pp. 167-
    173.
  8. Zimbardi, F., Upadhyaya, D., Tao, Y., OK, Y., Ning, S., Rohatgi, A., 2012. Ion implanted and screenprinted large area 19.6% efficiency n-type bifaciali solar cell. Photovoltaic Specialits Conference, pp. 002240-002243.
  9. Rohatgi, A., Meier, B., McPherson, B., OK, Y., Upadhyaya, D., Lai, H., Zimbardi, F., 2012. Highthroughpution-implantation for low-cost high efficiency silicon solar cells. Energy Procedia, Vol., 15, pp.10-19.
  10. Glunz, S., Rein, S., Lee, J., Warta, W., 2001. Minority carrier lifetime degradation in boron doped czochralski silicon. Journal of Applied Physics,Vol., 90, no. 5, pp.2397-2404.
  11. Geerligs, L., Machdonald, L., 2004. Recombination activity of interstitial iron and other transition metal point defects in p-type crystalline silicon. Applied Physics Letters, Vol., 85, no. 18, pp.4061-4063.
  12. Coletti, G., Mihailetchi, V., Komatsu, Y., Geerligs, L., Kvande, R., Arnberg, L. Wambach, K., Knopf, C.,Kopecek, R., Weeber, A., 2012. Large area screen printed n-type base silicon solar cells with efficiency exceeding 18%. Solar energy, Vol. 2011, pp. 2010.
  13. Pawlak, B., Janssens, T., Singh, S., Kuzma, I.,Robbelei, J., Posthuma, N., Poortmans, J.,Cristioan, F., Bazizi, E., 2012. Studies of implanted boron emitters for solar cell applications. Progress in Photovoltaic: Research and Applications, Vol. 20, no. 1, pp. 106-110.
  14. Benick, J., Hoex, B., Dingemans, G., Richter, A.,Hermle, M., Glunz, S., 2009. High efficiency ntype
    silicon solar cells with front side boronemitter. Proceedings of the 24th European Photovoltaic Solar nergy Conference, pp. 863-870.
  15. Meier, D., Rohatgi, A., 2010. Developing novel lowcost, high-throughput processing techniques for 20% efficient monocrystalline silicon solar cells. Photovoltaics Internation, Vol. 10, pp.87-93.
  16. Bateman, N., Sullivan, P., Reichel, C., Benick, J., Hermle, Rohatgi, D., A., 2011. High quality ion implanted boron emitters in an inter-digitated back contact solar cell with 20% efficiency. Energy Procedia, Vol. 8, pp. 509-514.
  17. Ryu, K., Upadhyaya, A., Ok, W., Xu, H., Metin, L., Rohatgi, N., 2012. High efficiency n-type solar cells with screen-printed boron emitters and ionimplanted back surface field. Photovoltaic Specialists Conference, 38th IEEE, pp. 002247-002249.
  18. Xing, S., Steven, G., Jurgen, M., Lionel, C., 2011. Optimization-based design of surface textures for thin-films Si solar cells. Optics Express, Vol. 19, no. S4, pp. 841-850.
  19. Netsor, X., Amir, D., Sascha, S., Giso, H., , S., Steven,G., Jurgen, M., Lionel, C., 2010. Influence of
    pyramid size of chemically textured silicon wafers on the characterization of industrial solar cells. Proceedings of the 25th EU PVSEC, 6-10 September, Valencia.
  20. Liopis, F., Tobias, I., 2005. Influence of texture size on the optical performance of silicon solar cells. Progress on Photovoltaic: Research and Applications, Vol. 13, no.27.
  21. Jan, K., Robby, P., Jorg, O., 2014. Structural analysis of textured silicon surfaces after ion implantation under tilted angle. Semiconductor Science and Technology, Vol. 29, pp. 1-7.
  22. Singh, P., Kumar, R., Lal, M., Das, B., 2001. Effectiveness of anisotropic etching of silicon in aqueous alkaline solutions. Solar Energy Materials and Solar Cells, Vol. 70, no. 1, pp. 103-113.
  23. Vazsonyi, E., Declercq, K., Einhaus, R., Van, E., Said, K., Poortmans, J., Szlufcik, J., Nijs, J., , P., Kumar, R., Lal, M., Das, B., 1999. Improved anisotropic etching process for industrial texturing of silicon solar cells. Solar Energy Materials and Solar Cells, Vol. 57, no. 2, pp. 179-188.
  24. Nishimoto, Y., Namba, K., 2000. Investigation of texturisation for crystalline silicon solar cells with sodium carbonate solutions. Solar Energy Materials and Solar Cells, Vol. 61, no. 4, pp. 393- 402.
  25. Marrero, N., Gonzalez, D., Guerrero, R., Borhcert, D.,Hernandez, R., 2007. Optimization of sodium carbonate texturisation on large-area crystalline silicon solar cells. Solar Energy Materials and Solar Cells, Vol. 91, no. 20, pp. 1943-1947.
  26. Hansen, S., Deal, M., 1993. Two dimensional process simulation for silicon and Gallium arsenide. Suprem IV User’s Manual, Stanford University, USA.
  27. Zahi, E., Nadjib, T., Bernards, S., Cedreic, B., Barbara, B., Maurice, Q., 2018. Doping profile measurement on textured silicon surface. EPJ Photovoltaics Vol. 9, No. 5, pp. 1-8.