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ABSTRACT 

Energy efficiency in mobile health applications is a 

relevant problem for long-term monitoring and user 

acceptance. Various parameters influence the runtime of 

the system to some degree. One of the parameters is the 

sampling rate of the individual distributed sensors. 

Increasing the sampling rate can lead to an increase in 

energy consumption within the system. By contrast, a 

reduction can lead to a loss of the data quality, which 

reduces the informative value of the results of algorithms 

that use this data. Using optimization methods from 

reinforcement learning and deep learning to adaptive 

adjust the sampling rates during runtime, energy 

efficiency could be improved in only 40 training runs 

without losing data quality during sampling.  

Keywords: mHealth, energy efficiency, therapy 

systems, reinforcement learning 

1. INTRODUCTION

Monitoring and evaluation of daily activities, 

measurement and control of nutritional habits, 

monitoring of glucose levels, long-term ECGs for the 

detection of ischemia signs up to the mobile early 

detection of emotional break-ins of patients suffering 

from chronic depression. This is just a small overview of 

mHealth solutions in the end-customer market, which 

according to Reuters is expected to grow by more than 

35% over the next three years and is already worth 23 

billion dollars (Orbis Research 2017). This can be seen 

especially in the trend that end customers want to live 

more consciously and healthily and want to have full 

control over their physical health. In the same time, this 

trend makes it possible to expand medical care, even 

where there is no doctor or hospital nearby. 

Many solutions use the already existing infrastructures at 

the end customer's side to perform their services. These 

include personal smartphone and wearables such as 

fitness trackers or smart watches. These are either 

extended with external sensors or the existing sensors in 

the devices are used. In order to be able to collect data 

and draw conclusions from this, the sensors in the 

devices must be used in different ways, which varies 

depending on the particular use case, i. e. so-called 

sampling rates are defined for each sensor, which collects 

data in different time intervals ranging from a few 

milliseconds to hours. The more fine-grained the 

sampling rate time intervals are, the higher the power 

consumption of the individual sensors. This also reduces 

the battery life of the entire system, which can have a 

negative impact on the acceptance and long-term use of 

the system for the end users (both patients and medical 

staff, depending on the application). Thus, in this way, 

user acceptance is also a significant aspect of the 

dissemination of mHealth solutions.  

In particular, algorithms such as deep neural networks, 

which depend on large amounts of data in order to deliver 

good results, require high sampling rates in order to 

obtain the necessary data in order to be trained 

effectively. In order to achieve a long runtime of the 

overall system, the energy efficiency of the application 

can be increased by adjusting the sampling rates. This 

can be described as an optimization problem, whereby 

the objective function is the runtime of the overall 

system. The dependent variables of the optimization 

problem are the sampling rates on the one hand and a data 

quality measure of the used algorithms that process the 

measured data and depend on them on the other. Such a 

data quality measure should avoid that the 

meaningfulness of the algorithms is impaired during 

optimization. 

The work is organized as follows. Section 2 discusses the 

existing approaches. Section 3 deals with the 

optimization problem between total runtime and 

sampling rates. In section 4 the concept is introduced to 

be able to do the optimization. Section 5 describes the 

use case to which the concept was applied. The results of 

the simulation are presented and discussed in section 6 

and section 7 presents the future considerations in detail. 

2. RELATED WORKS

In previous work, several approaches to saving energy 

resources have already been developed. (Nguyen et al. 

2008) describes a simulation system with which strategic 

decisions for the selection of monitoring components, 

like sensors etc., can be determined to reduce the power 

consumption of remote monitoring systems. Here, the 

focus of the work is on the technical description of the 

simulation system as well as the architectural design of 
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the simulation system. The actual optimization, however, 

is carried out manually and not algorithmically.  

(Zois, Levorato and Mitra 2013) presents an advanced 

approach that enables and disables sensors of a 

distributed monitoring system based on their power 

consumption and profile. This means that 

algorithmically, based on quality characteristics, it is 

determined when which sensor must be used. Like this 

paper, at (Zois, Levorato and Mitra 2013) the sensors are 

switched off completely, but no configuration elements 

of the sensors are included.  

Other approaches such as that of (Chai et al. 2014) do not 

consider the sensors and their power consumption per se, 

but rather the data transmission and their frequency. It is 

algorithmically determined when and how many data are 

to be transmitted from which sensor. Thus, the focus of 

the paper is on optimizing the transmission intervals 

between the base station and the sensors without 

specifically addressing the underlying algorithms and 

their optimization. 

As the approach of (Zois, Levorato and Mitra 2013), 

(Chattopadhyay and Mitra 2017) looks at the stochastic 

selection of transmitting sensors in a distributed sensor 

network based on a modified Gibbs algorithm to 

determine the incoming data under uncertainty. 

However, as with (Chai et al. 2014), the focus here is 

again on optimizing the transmission times between base 

station and sensors, without going into the optimal 

selection of sensors at a certain point in time, based on 

the measured data. 

Like (Chai et al. 2014), (Zhang, Zhang and Zhang 2017) 

uses the transmission rate as a variable for optimizing 

energy consumption. They maximize the lifetime of the 

system through a heuristic approach that allows transmit 

power through multi-hop transmission of data from 

sensor to sensor. Although the system is working, it can 

only be used when a multi-hop application is possible. 

(Aleithe et al. 2018) developed a simulation framework 

for troubleshooting mHealth systems. They investigated 

the runtime on the bases of the energy consumption of 

the sensors used. Although the approach identifies 

precise problem sources on the basis of the FMEA, the 

adjustment is still manual and cannot be changed 

dynamically. 

(Wu et al. 2019) consider the energy consumption when 

transferring data to a personal device. The sensors are all 

equipped with an energy recovery module, which allows 

them to generate their own power. During transmission, 

no more energy should be consumed than is produced, 

without causing excessive delays in transmission. Even 

if the energy consumption is taken into consideration, 

due to the energy production of the sensors, this is not the 

main focus for the optimization. 

3. OPTIMIZATION PROBLEM

An interesting parameter for improving distributed body 

area networks is the overall system runtime. Longer 

system runtime, e. g. due to reduced power consumption, 

reduces charging times, battery change, etc. This can be 

achieved by reducing the power consumption of 

distributed sensors, for example, by influencing certain 

parameters of the sensors. For example, sensors can be 

switched on and off or their scanning frequency can be 

changed. The disadvantage of switching the sensors on 

and off is that not all sensors can be completely 

disconnected from the power supply and reconnected 

later. In addition, there may be other functionalities of the 

systems that require certain sensors independent of the 

system under consideration. The scanning frequency of 

the sensors is thus an effective instrument to reduce 

power consumption in the overall system without 

compromising other functionalities. 

The sampling interval for sensors determines how often 

data are collected from the sensors and transferred to the 

system, where each sensor has its own sampling interval. 

The sampling interval is defined with the interval 0 <
𝑇 < +∞ and valid under the condition that 𝑇 ∈
ℝ.Depending on the nature of the sensor, this sampling 

interval can take any positive value. The higher the value 

of the sampling interval, the fewer data from the sensors 

are collected in some time frame. The overall description 

of 𝑇𝑛 is shown in Equation (1), where 𝑡𝑛 is a moment in

a time series which is generated by the sensor. 

𝑇𝑛 = 𝑡𝑛+1 − 𝑡𝑛|n ∈ ℕ{0 ≤ n < +∞},
t ∈ ℝ{−∞ < t < +∞} 

(1) 

If the sampling interval of a sensor is set to four, for 

example, the initial value is read in time zero and every 

four time steps new values are read in each subsequent 

time (Yang 2014). This fact can be illustrated in Figure 1 

more clearly. 

Figure 1: With a sampling interval of 0.2 (black line) 

only rough fragments of the actual signal are read and 

processed. If the sampling interval is decreased to 0.1 

(dotted line), considerably more characteristics of the 

signal can be read and processed at the same time. 

Now, T is defined as sampling interval, which can 

increase or decrease. This is an important fact for the 

optimization problem and the depending variables of T. 

Therefore, it must be defined how T behaves when it 

increases or vice versa. 

𝑇𝑑𝑒𝑐: = 𝑡𝑛(𝑇) > 𝑡𝑛(𝑇𝑑𝑒𝑐) (2) 
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Equation (2) defines, on the one hand, the decreasing of 

T (𝑇𝑑ec). This means that more data are collected in a

shorter time than before. 

𝑇𝑖𝑛𝑐 : = 𝑡𝑛(𝑇) < 𝑡𝑛(𝑇𝑖𝑛𝑐) (3) 

Equation (3), on the other hand, shows that if T increases 

(𝑇𝑖𝑛𝑐), it collects less data at the same time as before,

because it takes more time. 

In a continuous space, as with physical data such as heart 

rates etc., the sampling rate determines how accurately 

the real world can be approximated. Different sampling 

rates with different sensors, therefore, map the signals 

and thus the values from the real world with different 

precision. 

The selection of the optimal sampling rates for a 

maximum total runtime of the system can be described 

as an optimization problem. The runtime dur of the 

system represents the variable to be optimized and the 

sampling rates T of any number of sensors represent the 

parameters. In empirical experiments, it was proved, that 

the duration of a system is dependent on the sampling 

rates of all sensors in the system. Therefore Equation (4) 

defines the duration of the system. 

𝑑𝑢𝑟(𝑇): = 𝑑 ∈ ℕ|0 < d < +∞ (4) 

The problem with this definition of the optimization 

problem is that no clearly defined optimum exists. In this 

way, the optimization would converge against the 

highest possible sampling rates, which would cause 

almost a stagnation of the data collection. One possibility 

to define an optimum is the total runtime of the system 

without sensor reading. However, functionalities based 

on the collected data would be affected. A better 

definition of the optimum is, therefore a quality measure, 

which reflects the quality of functionality or an algorithm 

output and at the same time is used as an optimization 

parameter. For predictive algorithms, for example, such 

a quality measure could be the accuracy of the algorithm, 

cf. Equation (5), with the measured data based on the 

sampling rates of the sensors. 

𝑎𝑐𝑐(𝑇): = 𝑎 ∈ ℝ|0 ≤ a ≤ 1 (5) 

However, these quality measures must be defined 

individually for each algorithm and each function in 

order to measure the best possible representation of the 

quality of the algorithm's output. These quality measures 

limit the optimization of the sampling rates to the degree 

that the sampling rates can only take those values which 

are within a certain tolerance range of the quality 

measure. 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒(𝑎𝑐𝑐, 𝑑𝑢𝑟) (6) 

Both, the accuracy of the quality measure and the system 

duration, should be maximized after the optimization 

taking into account the dependencies between both 

variables. 

To describe the dependency between acc and dur 

Equations (7) and (8) are provided. 

𝑎𝑐𝑐(𝑇) = {
𝑎𝑐𝑐′(𝑇) ≥ 0, 𝑖𝑓 𝑇𝑑𝑒𝑐

𝑎𝑐𝑐′(𝑇) ≤ 0, 𝑖𝑓 𝑇𝑖𝑛𝑐
(7) 

𝑑𝑢𝑟(𝑇) = {
𝑑𝑢𝑟′(𝑇) ≥ 0, 𝑖𝑓 𝑇𝑖𝑛𝑐

𝑑𝑢𝑟′(𝑇) ≤ 0, 𝑖𝑓 𝑇𝑑𝑒𝑐
(8) 

Both equations show, that if T increases or vice versa, 

acc and dur are reverse related. This is because acc rises 

if more data are available to distinguish between multiple 

data samples. The connection between acc and dur will 

be further described in section 4 and 5. 

Thus, the optimization in this case consists of the 

optimization algorithm, mapped as a reinforcement 

learning (RL) problem, the total runtime of the system, 

the sampling rates of the sensors as optimization 

parameters and the quality measures of the functions and 

algorithms, which should be included as further 

optimization parameters and ensure the quality of the 

system. 

4. MODEL CONCEPT

As described in the previous chapter, the model concept 

presented here consists of several components. These 

components include the simulated environment with the 

associated sensors, the restrictive algorithms with their 

quality measures, which are formulated as boundary 

conditions for optimization, and the optimization 

algorithm itself. Figure 2 illustrates the exchange of 

information between the individual components. 

Figure 2: The optimization algorithm gives the sampling 

rates in the simulation (1). The simulation propagates the 

sampling rates to the sensors (2) and simulates the total 

runtime, which is passed back to the optimization 

algorithm (3). Based on the sampling rates, new test data 

are then generated (4) which are used in the quality 

measurement algorithm (5) to return the accuracy based 

on the current sampling rates to the optimization 

algorithm (6). The optimization algorithm then updates 

its network (7) and generates new sampling rates. 

As it is shown in Figure 2, the environment simulation is 

responsible for generating the duration of the total system 

runtime under the given sampling rates. The restrictive 

algorithms are also re-tested according to the sampling 

rates to calculate the change in the quality measure. The 
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optimization algorithm then calculates new sampling 

rates and the loop starts again. The individual 

components of the model architecture are explained in 

more detail below. 

The model of the environment maps the simulated data 

and the associated sensor network. The data generated 

for the sensors are based on different distributions to 

ensure variance between the individual sensors. This data 

is based on a continuous space, like most of the values 

measured in the real world. In a concrete example, these 

values could be the pulse rate or position determined via 

GPS. Due to the continuous nature of the measured data, 

the choice of sampling rate also determines the accuracy 

of the approximation of the environmental values. This, 

in turn, has an influence on pattern recognition of 

different algorithms whose data basis is subjected to this 

approximation. 

The quality measurement algorithms in the model consist 

of both the algorithm itself and the quality measure. 

Depending on the algorithm, the measurement of quality 

is defined differently. In this process, the quality 

measures flow indirectly into the calculation of the 

optimum to varying degrees, depending on the weighting 

in the reward function of the optimization algorithm. 

There is no restriction on the number of quality measures 

to be used, but there is an increase in the complexity of 

the environment and the difficulty of finding a global or 

near-global optimum when using multiple quality 

measures at once. 

As mentioned above, a reinforcement learning (RL) 

algorithm is defined as an optimization algorithm. 

Reinforcement learning is a semi-supervised learning 

method in the field of machine learning. This method 

consists of the continuous exchange between an action of 

the agent as a reaction to a state of the environment and 

the subsequent new state of the environment and a 

reward signal. Through the continuous exchange of 

status, reward and action, the agent develops a policy that 

attempts to optimize a variable in interaction with the 

environment. 

These RL algorithms have the property of reducing the 

state and action space by learning a function where other 

approaches such as brute force algorithms fail due to the 

complexity of the environment and the resulting runtime. 

In addition, RL algorithms using neural networks enable 

the learning of non-linear contexts. Since the state space, 

i. e. the measured data from the sensors, is subject to 

continuous distribution, policy-gradient functions that 

can deal with continuous environments are suitable for 

the selection of appropriate RL algorithms (Sutton and 

Barto 2018). Recurrent Neural Networks can be used to 

map the temporal dependency between runtime and 

selected sampling rates (Hochreiter and Schmidhuber 

1997). The output layer is a linear output consisting of 

three output nodes (total number of sensors in this use 

case). In contrast to classical classification methods, no 

classification is carried out here, but all values are 

returned directly. This has the advantage that the 

algorithm can adjust several sampling rates 

simultaneously during a one-time step. 

Now that the general structure of the model concept has 

been described, the next chapter will explain the use case 

and simulation structure. 

5. USE CASE SIMULATION

In the last chapter, the components of the presented 

model were introduced and explained in general. This 

chapter applies this model to a concrete use case from a 

current research project. The use case uses wearables and 

the participants' smartphones to identify mood patterns. 

Measured values can be obtained via the sensors from the 

smartphone as well as via the sensors of the wearables, 

which can be used to determine firmly classified mood 

levels. For this purpose, different sampling rates need to 

be set for different sensors. The problem here is the 

tradeoff between the long overall runtime of the system 

and the accuracy of the mood detection. If the sampling 

rate is maximized, the total runtime of the system drops 

to a few hours. If the sampling rates are increased 

simultaneously, the system can operate for up to one day. 

However, this reduces the accuracy of mood detection as 

predictive algorithms depend on the measured data. 

Real data are not yet available for use in the simulation 

since they will be collected later in the research project, 

assumptions about the data must be made in order to 

prove the convergence and thus the functionality of the 

approach. The sensor data of the wearables were 

generated randomized and normally distributed. To be 

able to predict three different moods with the quality 

measurement algorithms, three slightly different 

distributions were added to the simulated data. 

𝑝(𝑥) =
1

√2𝜋𝜎2
∗ 𝑒

−
2𝜎2 

(9) 

Equation (9) shows the used normal (Gaussian) 

distribution for generating the sample data. Depending 

on the mood, different mean values for each mood. Mood 

one got a mean of 2.0, mood 2 a mean of 0 and mood 3 a 

mean of -2.0. All have the same variance of 1. 

The used quality measure algorithm is a fully-connected 

two hidden layer neural network with classification 

output. The quality algorithm was pre-trained with data 

collected from the sensors. All data were labeled with the 

corresponding class labels of the three moods in a one-

hot-encoding. The simulation of the sensors and the 

associated continuous environment was implemented in 

Matlab Simulink® and generates the total runtime of the 

system. For the optimization algorithm, an actor-critic 

reinforcement learning model has been chosen, as this is 

a policy-gradient model that converges well with 

complex, continuous state-action spaces. 
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Figure 3: Illustrate the architecture of the deep neural 

network for the reinforcement learning algorithm 

The neuronal network for the reinforcement learning 

algorithm, displayed in Figure 3, was built up empirically 

and consists of several layers of LSTM cells to map the 

temporal dependencies. The Reward hypothesis is 

formulated as follows: 

𝐸(𝑟) = 𝛿 ∗ ((𝑎𝑡 − 𝑎𝑡−1) + (𝑎𝑡 − 𝑎𝑡0
)) +

(𝑑𝑡 − 𝑑𝑡−1)) ∗ 𝑦−1
(10) 

a describes the accuracy of the quality measurement and 

d the total runtime of the simulated system. δ and γ are 

hyperparameters for balancing the importance of the two 

parameters runtime and accuracy. In this use case, the 

total runtime was measured in seconds, resulting in a 

magnitude of 10⁴. Variations in the accuracy of the 

quality measure were in the range from 10⁻³ to 10⁻¹, 

which required an adjustment of δ and γ to an 

appropriated level. 

The loss function is a standard policy gradient update 

function similar to the publication in this paper (Mnih 

2016). However, a synchronous variant like the one in 

(Wang et al. 2016) was used. This decision was made due 

to the limited resources on the one hand and also based 

on the considerations and arguments and test results of 

(Wu et al. 2017) on the other hand. 

6. RESULTS & DISCUSSION

After a few episodes, the result of several training runs 

with different configurations was a convergence of the 

total runtime. As can be seen in Figure 4 the algorithm 

successfully converged after about ten episodes against a 

longer runtime than initially indicated. 

In 40 episodes the sampling rates were adjusted 15 times 

in each episode. When averaging the episodes, Figure 4, 

a short slump within an episode of the total runtime can 

be considered. Afterward, the expected convergence to 

an optimal overall runtime happens. A view at the 

sampling rates of the sensors in Figure 4 over the 

episodes shows that they also oscillate to an optimum in 

the applied use case. However, a dynamic environment 

has not been included, in which the sampling rates do not 

seek a general optimum state but are adjusted again 

depending on the changes in the environment, e. g. 

through user interaction. 

The presented results are a proof of concept which shows 

that the approach leads to an optimum in principle. The 

fast convergence and the high duration in the example are 

probably due to the simplicity of the environment, which 

consisted of only three sensors and a limiting algorithm. 

A more complex environment would require more effort 

from the RL algorithm. 

Figure 4: The first diagram shows the average total 

system runtime over the episodes with standard deviation 

as an error rate. The second diagram shows the 

development of the total runtime within an episode 

during the adjustment steps. The last illustration shows 

the sampling rates of the sensors and their development 

across the episodes. 

Nevertheless, despite simulative data with fictitious 

distributions, these outcomes can be interpreted as 

representative results, since the concept will behave in 

the same way even with sufficient underlying real data. 

The same applies to determine the accuracy of the quality 

measurement algorithms. These fundamentally influence 

the sensitivity of the algorithm to changes in the dataset. 

A change of the dataset to real data would only shift the 
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optimum between total runtime and accuracy, but not the 

convergence of the RL algorithm, by adjusting the 

hyperparameter in the reward hypothesis. Thus, the use 

of the concept for optimizing the overall runtime in 

mHealth applications can be described as basically 

successful. The following section describes the next 

steps for further evaluation of the concept to test its 

stability under real conditions. 

7. CONCLUSION & FUTURE WORK

This paper presented a concept to increase the overall 

runtime of a distributed sensor system by adjusting the 

sampling rates of the sensors. A reinforcement learning 

algorithm was used to optimize the ratio between sensor 

sampling rates and system runtime. In order to ensure 

that the quality of the collected data is respected, quality 

measurement has also been introduced. The result was a 

convergence of the overall system runtime to an optimal 

level without reducing the quality of the data and the 

resulting knowledge out of the data for further algorithms 

in the system. All calculations were performed on 

simulated data since the evaluation of real data can only 

be carried out after the proof of concept. 

The aim is to replace the simulated data with real test data 

to validate the functionality of the system under real 

conditions. In addition, a dynamic environment will be 

tested in future observations. For this purpose, everyday 

user interactions should be considered when calculating 

the optimum solution. Also, it is planned to test the 

algorithm on a field test with patients of a depression 

study. 
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