
OPTIMIZING ENERGY EFFICIENCY IN DISTRIBUTED MHEALTH NETWORKS

Philipp Skowron(a), Michael Aleithe(b), Bogdan Franczyk(c)

(a),(b) Leipzig University, Grimmaische Straße 12, 04109 Leipzig, Germany
(c) Wroclaw University of Economics, Wroclaw, Poland

(a)skowron@wifa.uni-leipzig.de, (b)aleithe@wifa.uni-leipzig.de,
(c)bogdan.franczyk@ue.wroc.pl

ABSTRACT

Energy efficiency in mobile health applications is a

relevant problem for long-term monitoring and user

acceptance. Various parameters influence the runtime of

the system to some degree. One of the parameters is the

sampling rate of the individual distributed sensors.

Increasing the sampling rate can lead to an increase in

energy consumption within the system. By contrast, a

reduction can lead to a loss of the data quality, which

reduces the informative value of the results of algorithms

that use this data. Using optimization methods from

reinforcement learning and deep learning to adaptive

adjust the sampling rates during runtime, energy

efficiency could be improved in only 40 training runs

without losing data quality during sampling.

Keywords: mHealth, energy efficiency, therapy

systems, reinforcement learning

1. INTRODUCTION

Monitoring and evaluation of daily activities,

measurement and control of nutritional habits,

monitoring of glucose levels, long-term ECGs for the

detection of ischemia signs up to the mobile early

detection of emotional break-ins of patients suffering

from chronic depression. This is just a small overview of

mHealth solutions in the end-customer market, which

according to Reuters is expected to grow by more than

35% over the next three years and is already worth 23

billion dollars (Orbis Research 2017). This can be seen

especially in the trend that end customers want to live

more consciously and healthily and want to have full

control over their physical health. In the same time, this

trend makes it possible to expand medical care, even

where there is no doctor or hospital nearby.

Many solutions use the already existing infrastructures at

the end customer's side to perform their services. These

include personal smartphone and wearables such as

fitness trackers or smart watches. These are either

extended with external sensors or the existing sensors in

the devices are used. In order to be able to collect data

and draw conclusions from this, the sensors in the

devices must be used in different ways, which varies

depending on the particular use case, i. e. so-called

sampling rates are defined for each sensor, which collects

data in different time intervals ranging from a few

milliseconds to hours. The more fine-grained the

sampling rate time intervals are, the higher the power

consumption of the individual sensors. This also reduces

the battery life of the entire system, which can have a

negative impact on the acceptance and long-term use of

the system for the end users (both patients and medical

staff, depending on the application). Thus, in this way,

user acceptance is also a significant aspect of the

dissemination of mHealth solutions.

In particular, algorithms such as deep neural networks,

which depend on large amounts of data in order to deliver

good results, require high sampling rates in order to

obtain the necessary data in order to be trained

effectively. In order to achieve a long runtime of the

overall system, the energy efficiency of the application

can be increased by adjusting the sampling rates. This

can be described as an optimization problem, whereby

the objective function is the runtime of the overall

system. The dependent variables of the optimization

problem are the sampling rates on the one hand and a data

quality measure of the used algorithms that process the

measured data and depend on them on the other. Such a

data quality measure should avoid that the

meaningfulness of the algorithms is impaired during

optimization.

The work is organized as follows. Section 2 discusses the

existing approaches. Section 3 deals with the

optimization problem between total runtime and

sampling rates. In section 4 the concept is introduced to

be able to do the optimization. Section 5 describes the

use case to which the concept was applied. The results of

the simulation are presented and discussed in section 6

and section 7 presents the future considerations in detail.

2. RELATED WORKS

In previous work, several approaches to saving energy

resources have already been developed. (Nguyen et al.

2008) describes a simulation system with which strategic

decisions for the selection of monitoring components,

like sensors etc., can be determined to reduce the power

consumption of remote monitoring systems. Here, the

focus of the work is on the technical description of the

simulation system as well as the architectural design of

Proc. of the Int. Workshop on Simulation for Energy, Sustainable Development & Environment, 2019
ISBN 978-88-85741-37-9; Bruzzone, Janosy, Nicoletti and Zacharewicz Eds.

30

DOI: https://doi.org/10.46354/i3m.2019.sesde.005

the simulation system. The actual optimization, however,

is carried out manually and not algorithmically.

(Zois, Levorato and Mitra 2013) presents an advanced

approach that enables and disables sensors of a

distributed monitoring system based on their power

consumption and profile. This means that

algorithmically, based on quality characteristics, it is

determined when which sensor must be used. Like this

paper, at (Zois, Levorato and Mitra 2013) the sensors are

switched off completely, but no configuration elements

of the sensors are included.

Other approaches such as that of (Chai et al. 2014) do not

consider the sensors and their power consumption per se,

but rather the data transmission and their frequency. It is

algorithmically determined when and how many data are

to be transmitted from which sensor. Thus, the focus of

the paper is on optimizing the transmission intervals

between the base station and the sensors without

specifically addressing the underlying algorithms and

their optimization.

As the approach of (Zois, Levorato and Mitra 2013),

(Chattopadhyay and Mitra 2017) looks at the stochastic

selection of transmitting sensors in a distributed sensor

network based on a modified Gibbs algorithm to

determine the incoming data under uncertainty.

However, as with (Chai et al. 2014), the focus here is

again on optimizing the transmission times between base

station and sensors, without going into the optimal

selection of sensors at a certain point in time, based on

the measured data.

Like (Chai et al. 2014), (Zhang, Zhang and Zhang 2017)

uses the transmission rate as a variable for optimizing

energy consumption. They maximize the lifetime of the

system through a heuristic approach that allows transmit

power through multi-hop transmission of data from

sensor to sensor. Although the system is working, it can

only be used when a multi-hop application is possible.

(Aleithe et al. 2018) developed a simulation framework

for troubleshooting mHealth systems. They investigated

the runtime on the bases of the energy consumption of

the sensors used. Although the approach identifies

precise problem sources on the basis of the FMEA, the

adjustment is still manual and cannot be changed

dynamically.

(Wu et al. 2019) consider the energy consumption when

transferring data to a personal device. The sensors are all

equipped with an energy recovery module, which allows

them to generate their own power. During transmission,

no more energy should be consumed than is produced,

without causing excessive delays in transmission. Even

if the energy consumption is taken into consideration,

due to the energy production of the sensors, this is not the

main focus for the optimization.

3. OPTIMIZATION PROBLEM

An interesting parameter for improving distributed body

area networks is the overall system runtime. Longer

system runtime, e. g. due to reduced power consumption,

reduces charging times, battery change, etc. This can be

achieved by reducing the power consumption of

distributed sensors, for example, by influencing certain

parameters of the sensors. For example, sensors can be

switched on and off or their scanning frequency can be

changed. The disadvantage of switching the sensors on

and off is that not all sensors can be completely

disconnected from the power supply and reconnected

later. In addition, there may be other functionalities of the

systems that require certain sensors independent of the

system under consideration. The scanning frequency of

the sensors is thus an effective instrument to reduce

power consumption in the overall system without

compromising other functionalities.

The sampling interval for sensors determines how often

data are collected from the sensors and transferred to the

system, where each sensor has its own sampling interval.

The sampling interval is defined with the interval 0 <
𝑇 < +∞ and valid under the condition that 𝑇 ∈
ℝ.Depending on the nature of the sensor, this sampling

interval can take any positive value. The higher the value

of the sampling interval, the fewer data from the sensors

are collected in some time frame. The overall description

of 𝑇𝑛 is shown in Equation (1), where 𝑡𝑛 is a moment in

a time series which is generated by the sensor.

𝑇𝑛 = 𝑡𝑛+1 − 𝑡𝑛|n ∈ ℕ{0 ≤ n < +∞},
t ∈ ℝ{−∞ < t < +∞}

(1)

If the sampling interval of a sensor is set to four, for

example, the initial value is read in time zero and every

four time steps new values are read in each subsequent

time (Yang 2014). This fact can be illustrated in Figure 1

more clearly.

Figure 1: With a sampling interval of 0.2 (black line)

only rough fragments of the actual signal are read and

processed. If the sampling interval is decreased to 0.1

(dotted line), considerably more characteristics of the

signal can be read and processed at the same time.

Now, T is defined as sampling interval, which can

increase or decrease. This is an important fact for the

optimization problem and the depending variables of T.

Therefore, it must be defined how T behaves when it

increases or vice versa.

𝑇𝑑𝑒𝑐: = 𝑡𝑛(𝑇) > 𝑡𝑛(𝑇𝑑𝑒𝑐) (2)

Proc. of the Int. Workshop on Simulation for Energy, Sustainable Development & Environment, 2019
ISBN 978-88-85741-37-9; Bruzzone, Janosy, Nicoletti and Zacharewicz Eds.

31

Equation (2) defines, on the one hand, the decreasing of

T (𝑇𝑑ec). This means that more data are collected in a

shorter time than before.

𝑇𝑖𝑛𝑐 : = 𝑡𝑛(𝑇) < 𝑡𝑛(𝑇𝑖𝑛𝑐) (3)

Equation (3), on the other hand, shows that if T increases

(𝑇𝑖𝑛𝑐), it collects less data at the same time as before,

because it takes more time.

In a continuous space, as with physical data such as heart

rates etc., the sampling rate determines how accurately

the real world can be approximated. Different sampling

rates with different sensors, therefore, map the signals

and thus the values from the real world with different

precision.

The selection of the optimal sampling rates for a

maximum total runtime of the system can be described

as an optimization problem. The runtime dur of the

system represents the variable to be optimized and the

sampling rates T of any number of sensors represent the

parameters. In empirical experiments, it was proved, that

the duration of a system is dependent on the sampling

rates of all sensors in the system. Therefore Equation (4)

defines the duration of the system.

𝑑𝑢𝑟(𝑇): = 𝑑 ∈ ℕ|0 < d < +∞ (4)

The problem with this definition of the optimization

problem is that no clearly defined optimum exists. In this

way, the optimization would converge against the

highest possible sampling rates, which would cause

almost a stagnation of the data collection. One possibility

to define an optimum is the total runtime of the system

without sensor reading. However, functionalities based

on the collected data would be affected. A better

definition of the optimum is, therefore a quality measure,

which reflects the quality of functionality or an algorithm

output and at the same time is used as an optimization

parameter. For predictive algorithms, for example, such

a quality measure could be the accuracy of the algorithm,

cf. Equation (5), with the measured data based on the

sampling rates of the sensors.

𝑎𝑐𝑐(𝑇): = 𝑎 ∈ ℝ|0 ≤ a ≤ 1 (5)

However, these quality measures must be defined

individually for each algorithm and each function in

order to measure the best possible representation of the

quality of the algorithm's output. These quality measures

limit the optimization of the sampling rates to the degree

that the sampling rates can only take those values which

are within a certain tolerance range of the quality

measure.

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒(𝑎𝑐𝑐, 𝑑𝑢𝑟) (6)

Both, the accuracy of the quality measure and the system

duration, should be maximized after the optimization

taking into account the dependencies between both

variables.

To describe the dependency between acc and dur

Equations (7) and (8) are provided.

𝑎𝑐𝑐(𝑇) = {
𝑎𝑐𝑐′(𝑇) ≥ 0, 𝑖𝑓 𝑇𝑑𝑒𝑐

𝑎𝑐𝑐′(𝑇) ≤ 0, 𝑖𝑓 𝑇𝑖𝑛𝑐
(7)

𝑑𝑢𝑟(𝑇) = {
𝑑𝑢𝑟′(𝑇) ≥ 0, 𝑖𝑓 𝑇𝑖𝑛𝑐

𝑑𝑢𝑟′(𝑇) ≤ 0, 𝑖𝑓 𝑇𝑑𝑒𝑐
(8)

Both equations show, that if T increases or vice versa,

acc and dur are reverse related. This is because acc rises

if more data are available to distinguish between multiple

data samples. The connection between acc and dur will

be further described in section 4 and 5.

Thus, the optimization in this case consists of the

optimization algorithm, mapped as a reinforcement

learning (RL) problem, the total runtime of the system,

the sampling rates of the sensors as optimization

parameters and the quality measures of the functions and

algorithms, which should be included as further

optimization parameters and ensure the quality of the

system.

4. MODEL CONCEPT

As described in the previous chapter, the model concept

presented here consists of several components. These

components include the simulated environment with the

associated sensors, the restrictive algorithms with their

quality measures, which are formulated as boundary

conditions for optimization, and the optimization

algorithm itself. Figure 2 illustrates the exchange of

information between the individual components.

Figure 2: The optimization algorithm gives the sampling

rates in the simulation (1). The simulation propagates the

sampling rates to the sensors (2) and simulates the total

runtime, which is passed back to the optimization

algorithm (3). Based on the sampling rates, new test data

are then generated (4) which are used in the quality

measurement algorithm (5) to return the accuracy based

on the current sampling rates to the optimization

algorithm (6). The optimization algorithm then updates

its network (7) and generates new sampling rates.

As it is shown in Figure 2, the environment simulation is

responsible for generating the duration of the total system

runtime under the given sampling rates. The restrictive

algorithms are also re-tested according to the sampling

rates to calculate the change in the quality measure. The

Proc. of the Int. Workshop on Simulation for Energy, Sustainable Development & Environment, 2019
ISBN 978-88-85741-37-9; Bruzzone, Janosy, Nicoletti and Zacharewicz Eds.

32

optimization algorithm then calculates new sampling

rates and the loop starts again. The individual

components of the model architecture are explained in

more detail below.

The model of the environment maps the simulated data

and the associated sensor network. The data generated

for the sensors are based on different distributions to

ensure variance between the individual sensors. This data

is based on a continuous space, like most of the values

measured in the real world. In a concrete example, these

values could be the pulse rate or position determined via

GPS. Due to the continuous nature of the measured data,

the choice of sampling rate also determines the accuracy

of the approximation of the environmental values. This,

in turn, has an influence on pattern recognition of

different algorithms whose data basis is subjected to this

approximation.

The quality measurement algorithms in the model consist

of both the algorithm itself and the quality measure.

Depending on the algorithm, the measurement of quality

is defined differently. In this process, the quality

measures flow indirectly into the calculation of the

optimum to varying degrees, depending on the weighting

in the reward function of the optimization algorithm.

There is no restriction on the number of quality measures

to be used, but there is an increase in the complexity of

the environment and the difficulty of finding a global or

near-global optimum when using multiple quality

measures at once.

As mentioned above, a reinforcement learning (RL)

algorithm is defined as an optimization algorithm.

Reinforcement learning is a semi-supervised learning

method in the field of machine learning. This method

consists of the continuous exchange between an action of

the agent as a reaction to a state of the environment and

the subsequent new state of the environment and a

reward signal. Through the continuous exchange of

status, reward and action, the agent develops a policy that

attempts to optimize a variable in interaction with the

environment.

These RL algorithms have the property of reducing the

state and action space by learning a function where other

approaches such as brute force algorithms fail due to the

complexity of the environment and the resulting runtime.

In addition, RL algorithms using neural networks enable

the learning of non-linear contexts. Since the state space,

i. e. the measured data from the sensors, is subject to

continuous distribution, policy-gradient functions that

can deal with continuous environments are suitable for

the selection of appropriate RL algorithms (Sutton and

Barto 2018). Recurrent Neural Networks can be used to

map the temporal dependency between runtime and

selected sampling rates (Hochreiter and Schmidhuber

1997). The output layer is a linear output consisting of

three output nodes (total number of sensors in this use

case). In contrast to classical classification methods, no

classification is carried out here, but all values are

returned directly. This has the advantage that the

algorithm can adjust several sampling rates

simultaneously during a one-time step.

Now that the general structure of the model concept has

been described, the next chapter will explain the use case

and simulation structure.

5. USE CASE SIMULATION

In the last chapter, the components of the presented

model were introduced and explained in general. This

chapter applies this model to a concrete use case from a

current research project. The use case uses wearables and

the participants' smartphones to identify mood patterns.

Measured values can be obtained via the sensors from the

smartphone as well as via the sensors of the wearables,

which can be used to determine firmly classified mood

levels. For this purpose, different sampling rates need to

be set for different sensors. The problem here is the

tradeoff between the long overall runtime of the system

and the accuracy of the mood detection. If the sampling

rate is maximized, the total runtime of the system drops

to a few hours. If the sampling rates are increased

simultaneously, the system can operate for up to one day.

However, this reduces the accuracy of mood detection as

predictive algorithms depend on the measured data.

Real data are not yet available for use in the simulation

since they will be collected later in the research project,

assumptions about the data must be made in order to

prove the convergence and thus the functionality of the

approach. The sensor data of the wearables were

generated randomized and normally distributed. To be

able to predict three different moods with the quality

measurement algorithms, three slightly different

distributions were added to the simulated data.

𝑝(𝑥) =
1

√2𝜋𝜎2
∗ 𝑒

−
2𝜎2

(9)

Equation (9) shows the used normal (Gaussian)

distribution for generating the sample data. Depending

on the mood, different mean values for each mood. Mood

one got a mean of 2.0, mood 2 a mean of 0 and mood 3 a

mean of -2.0. All have the same variance of 1.

The used quality measure algorithm is a fully-connected

two hidden layer neural network with classification

output. The quality algorithm was pre-trained with data

collected from the sensors. All data were labeled with the

corresponding class labels of the three moods in a one-

hot-encoding. The simulation of the sensors and the

associated continuous environment was implemented in

Matlab Simulink® and generates the total runtime of the

system. For the optimization algorithm, an actor-critic

reinforcement learning model has been chosen, as this is

a policy-gradient model that converges well with

complex, continuous state-action spaces.

Proc. of the Int. Workshop on Simulation for Energy, Sustainable Development & Environment, 2019
ISBN 978-88-85741-37-9; Bruzzone, Janosy, Nicoletti and Zacharewicz Eds.

33

Figure 3: Illustrate the architecture of the deep neural

network for the reinforcement learning algorithm

The neuronal network for the reinforcement learning

algorithm, displayed in Figure 3, was built up empirically

and consists of several layers of LSTM cells to map the

temporal dependencies. The Reward hypothesis is

formulated as follows:

𝐸(𝑟) = 𝛿 ∗ ((𝑎𝑡 − 𝑎𝑡−1) + (𝑎𝑡 − 𝑎𝑡0
)) +

(𝑑𝑡 − 𝑑𝑡−1)) ∗ 𝑦−1
(10)

a describes the accuracy of the quality measurement and

d the total runtime of the simulated system. δ and γ are

hyperparameters for balancing the importance of the two

parameters runtime and accuracy. In this use case, the

total runtime was measured in seconds, resulting in a

magnitude of 10⁴. Variations in the accuracy of the

quality measure were in the range from 10⁻³ to 10⁻¹,

which required an adjustment of δ and γ to an

appropriated level.

The loss function is a standard policy gradient update

function similar to the publication in this paper (Mnih

2016). However, a synchronous variant like the one in

(Wang et al. 2016) was used. This decision was made due

to the limited resources on the one hand and also based

on the considerations and arguments and test results of

(Wu et al. 2017) on the other hand.

6. RESULTS & DISCUSSION

After a few episodes, the result of several training runs

with different configurations was a convergence of the

total runtime. As can be seen in Figure 4 the algorithm

successfully converged after about ten episodes against a

longer runtime than initially indicated.

In 40 episodes the sampling rates were adjusted 15 times

in each episode. When averaging the episodes, Figure 4,

a short slump within an episode of the total runtime can

be considered. Afterward, the expected convergence to

an optimal overall runtime happens. A view at the

sampling rates of the sensors in Figure 4 over the

episodes shows that they also oscillate to an optimum in

the applied use case. However, a dynamic environment

has not been included, in which the sampling rates do not

seek a general optimum state but are adjusted again

depending on the changes in the environment, e. g.

through user interaction.

The presented results are a proof of concept which shows

that the approach leads to an optimum in principle. The

fast convergence and the high duration in the example are

probably due to the simplicity of the environment, which

consisted of only three sensors and a limiting algorithm.

A more complex environment would require more effort

from the RL algorithm.

Figure 4: The first diagram shows the average total

system runtime over the episodes with standard deviation

as an error rate. The second diagram shows the

development of the total runtime within an episode

during the adjustment steps. The last illustration shows

the sampling rates of the sensors and their development

across the episodes.

Nevertheless, despite simulative data with fictitious

distributions, these outcomes can be interpreted as

representative results, since the concept will behave in

the same way even with sufficient underlying real data.

The same applies to determine the accuracy of the quality

measurement algorithms. These fundamentally influence

the sensitivity of the algorithm to changes in the dataset.

A change of the dataset to real data would only shift the

Proc. of the Int. Workshop on Simulation for Energy, Sustainable Development & Environment, 2019
ISBN 978-88-85741-37-9; Bruzzone, Janosy, Nicoletti and Zacharewicz Eds.

34

optimum between total runtime and accuracy, but not the

convergence of the RL algorithm, by adjusting the

hyperparameter in the reward hypothesis. Thus, the use

of the concept for optimizing the overall runtime in

mHealth applications can be described as basically

successful. The following section describes the next

steps for further evaluation of the concept to test its

stability under real conditions.

7. CONCLUSION & FUTURE WORK

This paper presented a concept to increase the overall

runtime of a distributed sensor system by adjusting the

sampling rates of the sensors. A reinforcement learning

algorithm was used to optimize the ratio between sensor

sampling rates and system runtime. In order to ensure

that the quality of the collected data is respected, quality

measurement has also been introduced. The result was a

convergence of the overall system runtime to an optimal

level without reducing the quality of the data and the

resulting knowledge out of the data for further algorithms

in the system. All calculations were performed on

simulated data since the evaluation of real data can only

be carried out after the proof of concept.

The aim is to replace the simulated data with real test data

to validate the functionality of the system under real

conditions. In addition, a dynamic environment will be

tested in future observations. For this purpose, everyday

user interactions should be considered when calculating

the optimum solution. Also, it is planned to test the

algorithm on a field test with patients of a depression

study.

REFERENCES

Aleithe M., Skowron P., Carell A., Boettger D.,

Goblirsch T., Franczyk B., 2018. Simulation

Framework for Mobile Patient Monitoring

Systems. Proceedings of the International

Workshop on Innovative Simulation for Health

Care (IWISH), 17.09.2018, Budapest, Hungary.

Chai R., Wang P., Huang Z., Su C., 2014. Network

lifetime maximization based joint resource

optimization for Wireless Body Area Networks.

2014 IEEE 25th Annual International Symposium

on Personal, Indoor, and Mobile Radio

Communication (PIMRC), 1088–1092.

02.09.2014, Washington DC, USA.

Chattopadhyay A., Mitra U., 2017. Optimal Dynamic

Sensor Subset Selection for Tracking a Time-

Varying Stochastic Process. arXiv preprint

arXiv:1711.10610.

Hochreiter S., Schmidhuber J., 1997. Long Short-Term

Memory. Neural Computation 8:1735–1780.

Mnih V., Badia A.P., Mirza M., Graves A., Lillicrap

T.P., Harley T., Silver D., Kavukcuoglu K., 2016.

Asynchronous Methods for Deep Reinforcement

Learning. Proceedings of The 33rd International

Conference on Machine Learning. 19.06.16, New

York, NY, USA.

Nguyen K.D., Cutcutache I., Sinnadurai S., Liu S., Basol

C., Sim E., Phan L.T.X., Tok T.B., Francis L.X.,

Tay E.H., Mitra T., Wong W.-F., 2008. Fast and

accurate simulation of biomonitoring applications

on a wireless body area network. 2008 5th

International Summer School and Symposium on

Medical Devices and Biosensors, 145–148.

01.06.2008, Hong Kong, China.

Orbis Research, 2017. mHealth Market Worth $23

Billion in 2017 and Estimated to Grow at a CAGR

of more than 35% over the next three years.

Reuters. Available from:

https://www.reuters.com/brandfeatures/venture-

capital/article?id=4640 [01.18].

Sutton R.S., Barto A.G., 2018. Reinforcement Learning.

Cambridge:The MIT Press.

Wang J.X., Kurth-Nelson Z., Tirumala D., Soyer H.,

Leibo J.Z., Munos R., Blundell C., Kumaran D.,

Botvinick M., 2016. Learning to reinforcement

learn. Proceedings of the 38th Annual Conference

of the Cognitive Science Society. 10.08.16,

Philadelphia, Pennsylvania, USA.

Wu Y., Mansimov E., Liao S., Grosse R., Ba J., 2017.

Scalable trust-region method for deep

reinforcement learning using Kronecker-factored

approximation. Advances in neural information

processing systems. 5279–5288. 04.12.2017, Long

Beach, CA, USA.

Wu G., Chen Z., Zhang D., Jiaqi L., 2019. Resource

allocation algorithm with worst case delay

guarantees in energy harvesting body area networks

in Peer-to-Peer Networking and Applications

12:74-87.

Yang S.-H., 2014. Wireless sensor networks.

London:Springer.

Zhang Y.; Zhang B.; Zhang S., 2017. A Lifetime

Maximization Relay Selection Scheme in Wireless

Body Area Networks in Sensors, 17:1267-1287

Zois D.-S., Levorato M., Mitra U., 2013. Energy-

Efficient, Heterogeneous Sensor Selection for

Physical Activity Detection in Wireless Body Area

Networks. IEEE Transactions on Signal Processing

7:1581–1594.

AUTHORS BIOGRAPHY

Philipp Skowron studied Business Information Systems

at Harz University of Applied Sciences and afterwards

he continued his studies at University of Leipzig in the

same area of study. Currently, he is writing on his PHD

about the simulation of cyber physical systems using

artificial intelligence in the mHealth area, which is also

his specialization and research interest. Supervisor is

Prof. Dr.-Ing. Bogdan Franczyk.

Michael Aleithe studied Systemdesign at Ernst-Abbe

University for Applied Sciences and specialized at

Modeling and Simulating of Complex Technical

Systems. In the past he was employee at Xceptance

Software Technologies GmbH and works on agentbased

imulations. His research-interest include interconnected

data, simulation and mHealth. He is currently working on

Proc. of the Int. Workshop on Simulation for Energy, Sustainable Development & Environment, 2019
ISBN 978-88-85741-37-9; Bruzzone, Janosy, Nicoletti and Zacharewicz Eds.

35

a PhD thesis in the area of designing mHealth systems at

Leipzig University, Germany supervised by Prof. Dr.-

Ing. Bogdan Franczyk.

Bogdan Franczyk is professor at Leipzig University

since 2002. In the past he was the research director of

Intershop AG as well as professor in Swinburne,

Australia and Wroclaw, Poland. His research-area

includes especially information management systems.

Proc. of the Int. Workshop on Simulation for Energy, Sustainable Development & Environment, 2019
ISBN 978-88-85741-37-9; Bruzzone, Janosy, Nicoletti and Zacharewicz Eds.

36

