

© 2020 The Authors. This article is an open access article distributed under the terms and conditions of the Creative
Commons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

1

32nd European Modeling & Simulation Symposium
17th International Multidisciplinary Modeling & Simulation Multiconference

ISSN 2724-0029 ISBN 978-88-85741-44-7 © 2020 The Authors.
DOI: 10.46354/i3m.2020.emss.001

Usefulness of HIGH-LEVEL Parallel Compositions in
Genomics

Mario Rossainz-López1, *, Sarahí Zúñiga-Herrera1, Iván Olmos Pineda1, Ivo
Pineda-Torres1, Manuel Capel-Tuñón2

1 Faculty of Computer Science, Autonomous University of Puebla, San Claudio Avenue and South 14th Street, City,
San Manuel, Puebla, Puebla, 72000, México
2Software Engineering Department, College of Informatics and Telecommunications ETSIIT, University of
Granada, Daniel Saucedo Aranda s/n, Granada 18071, Spain

*Corresponding author. Email address: mrossainzl@gmail.com

Abstract
This work shows the use of parallel objects to build High Level Parallel Compositions or HLPC and their usefulness in genomics
through four case studies related to sequencing DNA chains. The first two case studies are combinatorial optimization problems:
grouping fragments of DNA sequences and the parallel exhaustive search (PES) of RNA strings that help the sequence and
assembly of DNAs in the construction of gnomes. The third case study shows the implementation of a Convolutional Neuronal
Network as a Parallel Object Composition to solve the problem of the recognition of DNA sequences from a database with 4 types
of hepatitis C virus (type 1, 2, 3 and 6). The results of this classification were obtained in terms of percentages of training precision
and validation precision. The fourth and final case study shows the problem of sequence typing (STP) as a form of DNA sequence
classification. It is particularized in a proposal for a parallel solution to find conserved regions of sequences that help discriminate
between different types of hepatitis C virus, through the creation of a decision tree using HLPC. We show the algorithms that
solves these problems using modeling and parallel simulation, their design and implementation as HLPC and the performance
metrics in their parallel execution using multicores, video accelerator card and CPU-SET or processors with shared-distributed
memory.

Keywords: HLPC, DNA Sequences, Parallel Objects, Structured Parallel Programming, Modeling & Simulation

1. Introduction

A computer simulation is a computation that models
the behavior of some real or imagined systems over
time. Computer simulations have become an important
and useful part of the mathematical models of many
natural science systems such as physics, electronics,
astrophysics, chemistry and biology, Fujimoto (2000).
Parallel Simulation refer to technologies that enable a
simulation program to execute on a computing system

containing multiple processors, Wilkinson, and Allen
(2000). Parallel simulation then refers to the use of
technologies that allow a simulation program to run in
a computer system that contains several processors
physically speaking, or several heavy or light processes
at the programming language level. In this work we use
both approaches to propose the use of parallel objects
to build High Level Parallel Compositions or HLPC and
their usefulness in genomics through four case studies
related to sequencing DNA chains. A DNA sequence
consists of an alphabet that is formed with the letters

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:mrossainzl@gmail.com

2 | 32nd European Modeling & Simulation Symposium, EMSS 2020

of the four nitrogenous bases that compose it: adenine,
thymine, guanine and cytosine. In the area of genomics
this is important because different types of sequence
tests can be used that identify, for example, infectious
agents present in a blood sample taken from a patient,
for diagnostic tasks. The rapid speed of sequencing
attained with modern DNA sequencing technology has
been instrumental in the sequencing of complete DNA
sequences, or genomes of numerous types and species
of life, Pareek, Smoczynski and Tretyn (2011). There are
many proposals to obtain partial and complete DNA
sequences quickly, obtaining speed in the calculations
using current technology. A direct way to reduce the
time of sequencing of DNA chains for different
purposes within genomics is to parallelize the
algorithms and solution techniques to the problems
that arise. The reader can consult the references Peña
et-al (2014), Sanjuan, Arnau and Claver (2008) and
Yang et-al (2008) that relate to this work. The present
research uses the structured parallel programming to
propose an implementation of a library classes named
high level parallel compositions or HLPC, Corradi et al
(1995), Danelutto and Torquati (2014). HLPCs are based
on the object-orientation paradigm to solve problems
that are prone to parallelization by using a class of
concurrent active objects that provide the programmer
with the most common communication patterns in
parallel programming: farms, pipeline and Three n-
arity, Capel and Troya (1994). With them, simulations
related to obtaining DNA sequences within Genomics
have been solved. Four case studies are shown to
demonstrate the usefulness of the HLPC, case study-1:
Parallel exhaustive search of RNA strings using HLPC,
case study-2: Assembly of DNA sequences using HLPC,
case study-3: Recognition of DNA sequences using
convolutional neuronal network with HLPC and case
study-4: DNA sequence typing with decision trees
using HLPC. Finally, for each case study, the
performance obtained in the speed of its parallel
executions and the scalability of the speedup compared
to Amdahl's Law are shown, with respect to the number
of CPU-SET used in the executions of each HLPC.

2. State of the art and motivation

The transformation of existing sequential applications
into parallel ones for multiprocessors environments
has been of great interest for decades. One alternative
is to opt for parallel and concurrent programming
algorithms at a high level of abstraction by using
patterns of communication/interaction between
processes. In Collins (2011), the effectiveness and
applicability of automatic techniques has been
explored. FastFlow is a framework intended to
propitiate high-level, pattern-based parallel
programming proposed by Aldinucci et-al (2014). The
ParaPhrase project of Torquati (2015) develop
frameworks and offer to users constructs, templates
and parallel communication patterns between
processes. Myoupo and Tchendji (2014) offers an
efficient coarse parallel algorithm to solve the optimal

binary search tree problem by using a binary tree as
communication pattern between the processes
involved. Some environments of parallel
programming, as the one called SklECL, Steuwer et-al.
(2011), are based on skeletons an wrappers that make
up the fundamental constructs of a coordination
language, defining modules that encapsulate code
written in a sequential language and three classes of
skeletons: control, stream parallel, and parallel data.
After reviewing the literature on the research topic, we
are interested to do research work that has to do with
parallel applications that use predetermined
communication patterns, among other component-
software. At least, the following ones have currently
been identified as important open problems: The lack
of acceptance structured parallel programming
environments of use to develop applications, the
necessity to have patterns or HLPCs (High Level
Parallel Composition), determination of a complete set
of patterns as well as of their semantics and adoption of
an object-oriented approach provide uniformity,
genericity and reusability. The pattern of HLPC has
deserved special interest from us.

3. HIGH-LEVEL Parallel Compositions

The basic idea here is to use classes to implement any
type of parallel communication patterns between the
processes of an application or distributed/parallel
algorithm, thus following the object orientation.
Starting from these classes, there will be objects (class
instances) and the execution of any object method can
be carried out through a service request. A HLPC comes
from the composition of three object types:

• An object manager that controls a set of objects
references, that address the collector object and
several stage objects and represent the HLPC
components whose parallel execution is
coordinated by the object manager.

• The objects stage are objects of a specific purpose,
in charge of encapsulating a client-server type
interface that settles down between the manager
and the slave-objects. These objects are external
entities that contain the sequential algorithm that
constitutes the solution of a given problem.
Additionally, they provide the necessary inter-
connection to implement the semantics of the
communication pattern whose definition is sought.

• A collector object is an object in charge of storing
the results received from the stage objects to which
is connected in parallel with other objects of HLPC
composition. During a service request the control
flow within the stages of a HLPC depends on the
implemented communication pattern. When the
composition finishes its execution an instance of
the collector class that is in charge of storing these
results and sending them to the manager, which
send the results to the environment.

 Rossainz-López et al. | 3

Manager, collector and stages are included in the
definition of a PO, Corradi et-al (1995).

3.1. The HLPC Pipeline

By using the pipeline parallel processes design
technique, the problem becomes divided in a series of
tasks that must be completed with a sequential
dependency between each and the next one, i.e., one
after another. In a pipeline each task can be executed by
a process, thread or processor independently, Roosta
(1999). The pipeline processes are sometimes called
stages of the pipeline, Rossainz and Capel (2008). Each
stage can contribute to the solution of the total problem
and it can pass on the information that the following
stage of the pipeline needs. Many times, this type of
parallelism is seen as a form of functional
decomposition. Figure 1 represents the pipeline parallel
pattern of communication as a HLPC.

Figure 1: The HLPC of a Pipeline

3.2. The HLPC Farm

The so named farm parallel pattern of interaction is
made up of a set of independent processes, called
worker processes, and a process that controls them,
called the process controller by Roosta (1999),
Rossainz and Capel (2008). The worker processes are
executed in parallel until all of them reach a common
objective. The process controller oversees distributing
the work and of controlling the progress of the farm
until the solution of the problem is found. Figure 2
shows the pattern of the farm as HLPC.

Figure 2: The HLPC of a Farm

3.3. The HLPC Tree

For simplicity the HLPC of a binary tree is shown,
although it can be generalized to an arity-n tree. The
nodes of the tree are represented by processors,
processes or threads. The root node of the tree receives
as input a complete problem that is divided into two
parts. One part is sent to the left-son node, while the
other is sent to the node that represents the right-son.
This division process progresses recursively until the
lowest atomic level of nodes in the tree is reached. After
a certain time, all the leaf-nodes receive as input a
subproblem given by its father-node, then they solve it
and the solutions are again sent to their ancestors. Any
father in the tree will obtain the partial solutions from
its children and will combine them to provide only one
solution that will be send to its own father node when it
finishes. Finally, the root node will deliver the complete
solution of the problem on finishing, Hansen (1993).
Figure 3 shows the graphic representation of an arity-
2 tree as an HLPC.

4. Case Study 1: Parallel exhaustive search of
RNA strings

In this work, it is proposed by using the HLPC model to
carry out a Parallel Exhaustive Search (PES) of RNA or
DNA strings using the communication pattern called
FARM. The PES was carried out in plain text files
containing a representation of RNA strings of an
organism with its respective name. In the HLPC Farm
used, the process controller or manager performs the
pre-processing of the file extracting the strings written
in the FASTA format (see Pearson and Lipman (1988)
for more details) to create the dictionary formed of the
characteristics of the strings and the strings
themselves, which is sent to each worker process or
stage to perform the exhaustive search using the
associated algorithms in the manager object and in the
slave objects of the HLPC. This search is carried out in
parallel by all the farm worker processes.

4 | 32nd European Modeling & Simulation Symposium, EMSS 2020

Figure 3: The HLPC of a Tree-Divide & Conquer

The HLPC Farm always guarantees a workload balance
of these processes thanks to the synchronization
restriction of the maximum parallelism that its
components have guaranteeing the reduction in the
execution times of each worker process, but also of the
HLPC Farm itself. Then a new model of HLPC called
HLPC ARNi is created, which is shown in Figure 4.

Figure 4: Model of HLPC ARNi

The pre-processing of the data is done through a text
file as input to the HLPC ARNi. This file contains the
name of a text string, as well as its characteristics,
which is sent to the Manager of the HLPC or Farm
Controller Process. The Manager has the Pre-
Processing through a Slave Object, which consists of
joining in a single string, all the ARNi strings that are in
the TXT input file including the line text that contains
the characteristics of the organism in question, then
the Manager distributes to each Stage process the

corresponding workload defining the limits start and
end of the PES for each Stage. The load balance is made
using the maximum parallelism in each Stage process
(worker) of the Farm which is based on the identifier
number of each worker process, Lee, et-al (2007),
Levitin (2003). Subsequently the PES is performed in
each stage of the HLPC ARNi executing the associated
algorithm through the corresponding Slave Object and
if a predefined substring is found within the ARNi
string it is sent to the Collector object, which receives
them in parallel from all the stage processes (workers)
connected to it. The Collector bugs fixer eliminates
repetitions of strings and the result is sent to the
Manager who in turn sends it to an output file to the
user. A simulation was designed using the HLPC ARNi
with the RNAi string database located at the Pombase
site
(ftp://ftp.ebi.ac.uk/pub/databases/pombase/pombe/C
hromosome_Dumps/fasta/). Easts are the agents of
fermentation and are found on the surface of plants,
Wood, et-al (2003). The experiment was carried out on
a server machine with Intel Xeon processor 2630 2.40
GHz and 8 cores. Experiments were performed with
different number of nodes to determine if the workload
was performed correctly. To determine if the length of
the strings to be searched has a direct impact on the
execution time, experiments with different string
lengths were performed for their search, where the
execution times increase according to the length of the
search string grows, but on the other hand the
execution times decrease as the number of nodes
(nuclei) that are used in the execution of the search
increases. In Figure 5 shows the scalability of the
Speedup found in the HLPC RNAi for different string
lengths using 3 to 8 nodes in its execution, showing
generally a good acceleration as the number of nodes
increases.

Figure 5: Scalability of the magnitude of the Speedup found for the
HLPC RNAi in exclusive nodes of 2, 3, 4, 5, 6, 7 and 8 cores

5. Case Study 2: Assembly of DNA sequences

The use of HLPCs for grouping DNA sequence
fragments from the parallelization of a clustering
algorithm to evaluate a set of fragments are made,
which have a high probability of being aligned in an
assembly task, Masoudi-Nejad et-al (2013), DanishAli

 Rossainz-López et al. | 5

and Farooqui (2013). The algorithm finds the splices
between the fragments using the Myers algorithm and
links them in a graph. Then an in-depth search is done
in the graph to form the groups and send them as a
result. The assembly of DNA strings is proposed as a
combinatorial optimization problem and is classified
as NP-hard and is based on the paradigm divide-and-
conquer using a structure type farm, so that the
computational cost of finding the sequence alignments
and its splice is substantially reduced with respect to its
sequential version. The number of processes required
to process the fragments of DNA sequences of a specific
genome such as that of a virus or bacteria is determined
by the splice of the strings found by the sequential
solution algorithm, which looks in parallel for overlaps
in the remaining fragments. Two sub-strings of each
fragment are taken for comparison with other
fragments; and thus, splices are located and associated
with the processes. A splice graph is then generated
that shows the relationship between pairs of nodes, as
well as the lack of communication among others. The
set of nodes of the graph that are inter-related are
grouped together within a worker process pattern farm.
Each set of related nodes in the graph are independent
and represent the grouping of fragments found. In
Figure 6 is shown the representation of HLPC for
grouping DNA sequence fragments.

Figure 6: The HLPC GraphADN

Figure 7: HLPC GraphADN Speedup found with virus and bacterial
genomes from the European Nucleotide Archive

The new HLPC named HLPC GraphADN is structured as
a FARM of n-fragments of DNA sequences and each
worker process is itself a two directions-
communication pipeline HLPC formed by m-stages
where each stage of HLPC Pipe represents a splice
sequence of DNA strings connected with both, the
previous stage as the next stage. The collector object
receives the number of formed groups and the elements
that belong to each of the formed groups. With the
latter information collected, an in-depth search is
performed to locate these items and obtain the
sequence groups formed by the sequential algorithm
assigned to each of the HLPC’s slave objects with this
result, the user can use an assembly of DNA sequences
to try to complete a particular genome or to finish an
incomplete sequence of DNA strings of some animal or
plant type species. An simulation was designed by using
the HLPC GraphADN with genomes of viruses and
bacteria available on the web whose data were obtained
from European Nucleotide Archive, is shown in Figure
7. The plot shows the number of processes deployed for
the calculation of eight genomes in an experiment
conducted on a computer Intel Core i8 processor and
using a video accelerator card with 1,664 CUDA cores.

6. Case Study 3: Recognition of DNA sequences
using convolutional neuronal network
(CNN)

A CNN is an algorithm for machine learning in which a
model learns to perform classification tasks directly
from images, videos or sounds, Calvo (2015). The
parallelization of a convoluted neuronal network under
the HLPC model is shown. The HLPC Pipeline is adapted
to a convoluted neuronal network model to the transfer
learning technique; which allows its execution in
parallel computers or computers with GPUs.
Convolutional networks have characteristics of neural
networks such as activation functions or fully
connected layers, but also introduce two concepts: the
convolutional layer and the grouping or sampling layer.
The architectures of convolutional networks are built
by stacking these elements, that is why according to the
computational and memory use issues of a neural

6 | 32nd European Modeling & Simulation Symposium, EMSS 2020

network for image processing, Marturet and Alferez
(2018), it is useful and appropriate to represent it
through an HLPC pipeline. For the training of a
convolutional neuronal network, the transfer of
learning by extraction of deep descriptors was used as
a way of training and validating the neural network on
the set of images of the specific problem to be solved,
Marcelo, et-al (2000). In this way we obtain the HLPC
Pipeline-CNN that is shown in the figure 8, and that
will help to solve the case study that is shown below.

Figure 8: HLPC Pipeline-CNN

The idea is to convert the DNA sequences to graphic
representations to train the HLPC Pipeline-CNN. The
DNA sequences are represented by letters: A-Adenine,
G-Guanine, C-Cytosine and T-Thymine, however, a
CNN is not made to process information with this
format, so a graphic representation of the sequences
was designed. We used 1847 DNA sequences from a
database with 4 types of hepatitis C virus (type 1, 2, 3
and 6) taken from the repository available on the ViPR
page
(https://www.viprbrc.org/brc/home.spg?decorator=vi
pr) and a set of DNA sequences from the Molecular
database that has 3190 sequences, available on the UCI
page (https://archive.ics.uci.edu/ml/index.php).

The computer equipment used for the training of the
HLPC Pipeline-CNN was a parallel computer with 64
processors of which only 32 were exclusive for the tests
of this work, 8 GB of main memory with a distributed
shared memory architecture and high-speed buses.
Regarding classification results for the HLPC Pipeline-
CNN trained with the database of the four types of
Hepatitis C virus, a precision of 95% was obtained with
145 images tested and at the end of step 4000 the
precision training was 94.5% and precision validation
95%. The graphs in Figure 9 show the performance

analysis of the HLCP Pipeline-CNN from 1000 training
steps to 4000 training steps respectively.

Figure 9: Speedup scalability found for HLPC

 Pipeline-CNN of Precision training and precision
validation with 1000-4000 training steps for Hepatitis
C virus type 1,2,3 and 6. In this graph the speedup of the
precision training and precision validation of HLPC
Pipeline-CNN with classes of Hepatitis C virus type 1, 2,
3 and 6 is illustrated. In her, the speedup shows an
acceleration to be incorporating more CPU-SET,
always below the law of Amdahl. The execution times in
each training vary.

7. Case Study 4: DNA sequence typing with
decision trees

The problem of sequence typing (STP) is shown as a
form of DNA sequence classification. It is particularized
in a proposal for a parallel solution of finding conserved
regions of sequences that help discriminate between
the different types of hepatitis C virus through the
creation of a tree of decision using High Level Parallel
Compositions (HLPC) and that the researchers carry
out the design of primers and diagnostic tests of
polymerase chain reactions (PCR) when they try to
detect different types of viruses, in less time. A decision
tree is a structure formed by a set of nodes, leaves and
branches that represents a prediction model whose
objective is inductive learning from observations and
logical constructions, Barrientos, Cruz and Acosta
(2009). The root node of the tree is the attribute from
which the classification process begins, the internal
nodes correspond to each of the questions about the
attribute of the problem. Each possible response is
represented by a child node. The branches that leave
each of these nodes are labeled with the possible
attribute values. The leaf nodes correspond to a
decision, which coincides with one of the class
variables of the problem to be solved (Barrientos, Cruz
and Acosta, 2009). The definition of the CPAN-
DesicionTree (see Figure 10) is shown as an integrated

https://www.viprbrc.org/brc/home.spg?decorator=vipr
https://www.viprbrc.org/brc/home.spg?decorator=vipr
https://archive.ics.uci.edu/ml/index.php

 Rossainz-López et al. | 7

part of a solution proposal (entropy, information gain
and decision tree) in the problem to be solved: In a set
of sequences or instances Gw of DNA we want to locate
those attributes 𝐴𝑖 that provide more information and
are considered the best attributes to solve the
classification problem of the seven Cy classes of the
hepatitis C virus that currently exist. As an example of
simulation, the data in Table 1 is used to show that it is
possible to classify DNA sequences using the concepts
of entropy and information gain. In this case, attribute
𝐴3 with greater mayor (Information Gain) is selected,
this attribute quickly discriminates classes 𝐶1 and 𝐶4.
When calculating again 𝐼𝐺 of all the attributes, it is
obtained that both 𝐴1 and 𝐴2 allow to discriminate
classes 𝐶2 and 𝐶3. This is obtained by generating a
decision tree where each vertex has a maximum of 4
possible values. This structure is created using the
CPAN-DesicionTree (Figure 10).

Table 1. Representation of 𝑆 set of instances 𝐺𝑤, where each instance

belongs to a class 𝐶𝑦.

Cy Gw A1 A2 A3 A4 A5

C1 G1 A T T A T
C1 G2 A T T C T
C2 G3 A G C A C
C2 G4 A G C G C
C2 G5 A G C A T
C2 G6 A G C G T
C3 G7 G T C T C
C3 G8 G T C T C
C3 G9 G T C A G
C3 G10 G T C T G
C4 G11 A G A A C
C4 G12 A G A G C

The CPAN-DesicionTree receives through its Manager
process the database or repository with the DNA
sequence instances of the Hepatitis-C virus. The
Manager process sends the information to the first
Stage process that represents the decision tree root and
that has a slave object associated with the
mathematical algorithms and models of Shannon's
entropy and information gain. Then there is an
attribute considered as “best attribute” that is solving
the classification problem or a branch that generates
more nodes and can obtain the best attributes that are
sent to the Collector process who receives them to form
the best solution set attributes of the classification
problem. The set of best attributes is sent to the
Manager process, which in turn sends them to the user
as the result of the process. The execution of the
DesicionTree CPAN processes is carried out in parallel,
with the restriction, synchronization and process
communication policies, whose details can be found in
Collins (2011), Ernsting and Kuchen (2012). Figure 11
shows the scalability of the Speedup found in the
CPAN-DesicionTree from 3 to 8 cores, obtaining a good
acceleration.

Figure 10: Decision tree represented as the CPAN-DesicionTree to solve
the problem of classification in DNA sequences

Figure 11: Speedup scalability found for CPAN-DesicionTree in the
problem of classification of Hepatitis-C virus DNA sequences from the
example in Table 1.

8. Conclusions

We discuss the design, implementation and simulation
of parallel applications based on the HLPC. In a way we
discuss the implementation of HLPCs pipeline, farm
and Tree as patterns of communication/interaction
between processes, which can even be used by
inexperienced parallel application programmers to
obtain efficient code by only programming the
sequential parts of their applications. We have

8 | 32nd European Modeling & Simulation Symposium, EMSS 2020

presented four case studies: the parallel exhaustive
search of RNAi strings through the new HLPC RNAi
constructed, the parallel calculation of the DNA
sequences for 8 genomes, the implementation of a
Convolutional Neuronal Network as a Parallel Object
Composition to solve the problem of the recognition of
DNA sequences from a database with 4 types of
hepatitis C virus and the solution to the problem of
sequence typing (STP) as a form of DNA sequence
classification to find conserved regions of sequences
that help discriminate between different types of
hepatitis C virus, through the creation of a decision tree
using HLPC. In all cases of study, the efficiency and
speedup scalability of the HLPCs in the solution of the
problems has been shown.

References

Aldinucci, M., Danelutto, M., Kilpatrick, P. and
Torquati, M. 2014. FastFlow: high-level and
efficient streaming on multi-core. Programming
Multi-core and Many-core Computing Systems,
Wiley.

Barrientos Martínez R.E., Cruz Ramírez N., Acosta Meza
H.G., et-al, 2009. Árboles de Decisión como
herramienta en el diagnóstico médico, Revista
Médica de la Universidad Veracruzana, Volumen 9,
Número 2, Veracruz, México.

Calvo D. 2015. Red Neuronal Convolucional (CNN). Data
Scientist. http://www.diegocalvo.es/red-neuronal-
convolucional/

Capel, M., & Troya, J. M., 1994. An Object-Based Tool
and Methodological Approach for Distributed

Collins A.J. 2011. Automatically Optimising Parallel
Skeletons. MSc thesis in Computer Science, School
of Informatics University of Edinburgh, UK.

Corradi A, Leonardo L, Zambonelli F., 1995.
Experiences toward an Object-Oriented Approach to
Structured Parallel Programming. DEIS technical
report no. DEIS-LIA-95-007.

Danelutto M. and Torquati M, 2014. Loop parallelism: a
new skeleton perspective on data parallel patterns.
Parallel Distributed and Network-based Processing,
Torino, Italy.

DanishAli S. and Farooqui 2013. Approximate Multiple
Pattern String Matching using Bit Parallelism.
International Journal of Computer Applications,
Volume 74, No.19, pp. 47–51.

Ernsting S. and Kuchen H. 2012. Algorithmic skeletons
for multi-core, multi-GPU systems and clusters,
Int. J. of High-Performance Computing and
Networking, Vol. 7, No. 2, pp.129–138.

Fujimoto R.M. 2000. Parallel and Distributed
Simulation Systems. Wiley, Hoboken (2000).

Hansen B., 1993. Model Programs for Computational
Science: A programming methodology for

multicomputers. Concurrency (Chichester,
England), 5(5).

Lee R.C.T., Tseng S.S., Chang R.C., Tsai Y.T., 2007.
Introducción al diseño y análisis de algoritmos, un
enfoque estratégico. Mc Graw Hill.

Levitin A., 2003. The Design of Analysis of Algorithms.
Wesley.

Marcelo A., Apolloni J., Kavka C., et-al 2000.
Entrenamiento de Redes Neuronales. Universidad
Nacional de San Luís. WICC 2000. Argentina.

Marturet R., Alferez E.S., 2018. Evaluación de Redes
Neuronales Convolucionales para la clasificación de
imágenes histológicas de cancer color rectar
mediante transferencia de aprendizaje. Master en
Bioinformática y Bioestadística. Universitat Oberta
de Catalunya. España.

Masoudi-Nejad, A., Narimani, Z. and Hosseinkhan, N.
2013. Next Generation Sequencing and Sequence
Assembly. SpringerBriefs in Systems Biology.

Myoupo, J.F. and Tchendji, V.K. (2014). Parallel
dynamic programming for solving the optimal
search binary tree problem on CGM, International
Journal of High Performance Computing and
Networking, Vol. 7, No. 4, pp.269–280.

Pareek C., Smoczynski R. and Tretyn A. 2011.
Sequencing technologies and genome sequencing,
Journal of Applied Genetics, Vol. 25, No. 4, pp.41–
3435.

Pearson W.R., Lipman D.J., 1988. Improved tools for
biological sequence comparison. In Proceedings of
the National Academy of Sciences of the United
States of America 85,
http://fasta.bioch.virginia.edu/fasta_www2/fasta_
list2.shtml

Peña A.J., Claver J.M., Sanjuan A., Arnau V. (2014).
Análisis Paralelo de Secuencias ADN mediante el uso
de GPU y CUDA, ResearchGate.
https://www.researchgate.net/publication/228857
228.

Rossainz, M., 2005. Una Metodología de Programación
Basada en Composiciones Paralelas de Alto Nivel
(HLPCs). Universidad de Granada, PhD dissertation,
02/25/2005.

Rossainz, M., Capel M., 2008. A Parallel Programming
Methodology using Communication Patterns
named CPANS or Composition of Parallel Object.
20TH European Modeling & Simulation
Symposium.Campora S. Giovanni. Italy.

Rossainz-López Mario, Capel-Tuñón Manuel, Pineda-
Torres Ivo, Olmos-Pineda Ivan, Olvera-López
Arturo, 2018. Use of Parallel Patterns of
Communication between Processes for search of
Sequences DNA and RNAi Strings. Research in
Computing Science: Applications of Language &
Knowledge Engineering. Volume 148, Number 3,

http://www.diegocalvo.es/red-neuronal-convolucional/
http://www.diegocalvo.es/red-neuronal-convolucional/
http://fasta.bioch.virginia.edu/fasta_www2/fasta_list2.shtml
http://fasta.bioch.virginia.edu/fasta_www2/fasta_list2.shtml

 Rossainz-López et al. | 9

ISSN: 1870-4069. México.

Roosta, S., 1999. Parallel Processing and Parallel
Algorithms. In Theory and Computation. Springer.

Sanjuan A., Arnau V., Claver J.M. 2008. Análisis Paralelo
de Secuencias ADN sobre computadores con
multiples cores. Actas de las XIX Jornadas de
Paralelismo, Castellón, España.

Steuwer M., Kegel P. and Gorlatch S. 2011. SkelCL a
portable skeleton library for high-level GPU
programming. Proceedings of the 16th IEEE
Workshop on High-Level Parallel Programmin
Models and Supportive Environments, May,
Anchorage, AK, USA.

Torquati, M., Aldinucci, M. and Danelutto, M. (2015)
FastFlow Testimonials, Computer Science
Department, University of Pisa, Italy.

Wilkinson, B., Allen, M. 2000. Parallel Programming.
Techniques and Applications Using Networked
Workstations and Parallel Computers, Prentice Hall.

Wood V., Gwilliam R., Rajandream M.A., et al. 2003. The
genome sequence of Schizosaccharomyces pombe.
Nature.

Yang X.Y., Ripoll A., Marin I., Luque E. 2008. Genomic-
scale analysis of DNA Words of Arbitrary Length by
Parallel Computation. NIC Series, Vol. 33, 623–630.

