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Abstract 
In the paper, a pseudorandom number sequence sensor is considered, its design is based on the Markov model of the simulated 
process. Such a model is derived from either the theoretical two-dimensional probability density or from the random process 
samples obtained experimentally. There has been developed a simple high-speed algorithm for operating the sensor using a 
primary source of pseudorandom numbers with a uniform probability distribution, and statistical simulation of such algorithm 
has been carried out. It is shown that the obtained sequence of numbers possesses probabilistic and correlation properties that 
are in good agreement with the specified properties of the simulated random processes. When substituting a hardware random 
number generator for the source of equiprobable pseudorandom numbers, the sensor generates truly random numbers. The 
possibilities of the hardware implementation of the introduced algorithm in the form of a pseudorandom (random) number 
generator are demonstrated. 
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1. Introduction 

For their solution, various problems of statistical 
simulation (Knuth, 1997; Law and Kelton, 2000; Bardis 
et al, 2009), cryptography (Schneier, 1996; Ferguson 
and Schneier, 2003), statistical radio engineering 
(Bykov, 1971) need generating a sequence of random or 
pseudorandom numbers with specified properties. 
Random (truly random (Ferguson and Schneier, 2003)) 

numbers are generated using physical sources of 
random processes with subsequent transformation 
into the required form (Bardis et al, 2009). A produced 
random realization cannot be repeated again, and that 
may be either their advantage, or disadvantage, 
depending on the problem to be solved. Besides, the 
physical sensor is subject to environmental influences 
making the statistical properties of the generated 
numbers dependent on temperature, humidity, supply 
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voltage, etc.  

Pseudorandom number sensors can be implemented 
in both in software and in hardware. As a rule, they are 
built in the form of linear congruent generators 
(Schneier, 1996) or sensors based on shift registers 
with linear and nonlinear feedbacks (Bykov, 1971; 
Knuth, 1997). The most common are the generators 
producing the equiprobable (in a set range) 
pseudorandom numbers. They are included in both 
programming systems (C, Pyton, R) and application 
packages (MathCAD, MathLab). However, in many 
practical applications, the sources of pseudorandom 
numbers with specified statistical properties are also 
required (Bykov, 1971). That applies particularly to the 
Gaussian random numbers and the numbers obtained 
from them by means of nonlinear operations. 

The structure of the paper includes the following 
parts. In Section II, there are presented a brief 
description of the literature on the topic of the paper as 
well as the recent studies and their conclusions. Then 
the research problem that this paper addresses is 
stated. In Section III, the Markov model of discrete 
random process is introduced, it can simulate sampling 
of such process at the specific instants in time. The 
calculation of the model parameters is demonstrated, 
for this purpose the set theoretical two-dimensional 
probability density together with the obtained 
experimental data are used. In Section IV, the algorithm 
for simulating the sampling of the random process with 
the required statistical characteristic is introduced. Its 
block diagram is produced and the sequence of 
operations is described. In Section V, there are provided 
the results of the algorithm operation that both 
represent and confirm the theoretical results. The 
realizations of the Gaussian and non-Gaussian random 
processes with the assumed two-dimensional 
probability densities are simulated. Finally, in Section 
VI, the conclusions are drawn about the efficiency of 
the proposed algorithm and the usefulness of its 
practical application. 

2. State of the art 

A review of the sensor development was made by Pierre 
L’Ecuyer (2017), while more detailed reference 
information was provided by Kroese, Taimre, and 
Botev (2011). 

In tasks of statistical simulation, it is necessary to 
generate the sequences of pseudorandom numbers 
(signals) with the specified one-dimensional and two-
dimensional probabilistic properties. For example, in 
radio physics and radio engineering, the development 
of the algorithms for simulating the random 
realizations obeying the Nakagami distribution is 
relevant (Recommendation ITU-R, 2019). In a number 
of cases, the random process should be simulated for an 
available experimental realization of the samples with 
the unknown probabilistic properties. Today, great 
opportunities are opened for the development of the 

methods for simulating random radio signals and their 
propagation medium. 

A high-speed pseudo-random number generation 
algorithm should not include complex computational 
transformations of samples. It would also be useful to 
minimize the number of operations with numbers in 
binary code. 

In order to provide the high sensor speed and 
generality, the random numbers with the specified 
distribution law can be generated in accordance with 
the Markov model of the simulated process (Ventsel 
and Ovcharov, 2000). It is shown below that such a 
model can be effectively built in terms of either the 
theoretical two-dimensional probability density or the 
experimentally obtained sample of the random 
process. 

3. Markov Model of Discrete Random Process 

The discrete random process 𝑥𝑛 with a finite number of 
values can be represented by the process 𝑧𝑛 = 𝑖 with 
integer values. Here 𝑛 = 1, 𝑁 is the sample number, N is 
the sample size, 𝑖 = 1, 𝑀 is the number of 𝑥𝑛 value, M is 
the number of the possible values of 𝑥𝑛. 

In the Markov model of a random process (simple 
Markov chain), the probability of the value 𝑧𝑛+1 = 𝑗 at 
the time 𝑡𝑛+1 depends only on the previous value 𝑧𝑛 = 𝑖 
at the time 𝑡𝑛 and does not depend on earlier values 
(Ventsel and Ovcharov, 2000). The Markov chain is 
described by the transition probability matrix of the 
form 

[𝑃𝑖𝑗] = [

𝑃11 𝑃12 … 𝑃1𝑀

𝑃21 𝑃22 … 𝑃2𝑀

… … … …
𝑃𝑀1 𝑃𝑀2 … 𝑃𝑀𝑀

] (1) 

where 𝑃𝑖𝑗, 𝑖, 𝑗 = 1, 𝑀 is the probability of the process 
transition from the value 𝑧𝑛 = 𝑖 to the value 𝑧𝑛+1 = 𝑗. The 
probabilities 𝑞𝑖 of the initial values 𝑧1 = 𝑖 are 
determined by the matrix 

[𝑞𝑖] = [𝑞1 𝑞2 … 𝑞𝑀]𝑇 (2) 

where the symbol “T” denotes the matrix 
transposition. 

The time-discrete random process with continuous 
values 𝑥𝑛 is uniformly quantized by an analog-to-
digital converter in terms of the amplitude thresholds 

𝑔𝑚 = {

−∞ ,             if 𝑚 = 0 ,

(𝑚 − 𝑀 2⁄ )𝑑 + 𝑥̄ ,  if 𝑚 = 1, (𝑀 − 1) ,
∞ ,           if  𝑚 = 𝑀 ,

 (3) 

and then the digital values 𝑧𝑛 = 𝑖, 𝑖 = 1, 𝑀 are generated. 
Here i is the quantization interval number, 𝑥̄ = ⟨𝑥(𝑡)⟩ is 
the mathematical expectation (mean value) of the 
process 𝑥(𝑡), and d is the quantization step selected 
according to the relation 𝑑 = (6 ÷ 10)𝜎 𝑀⁄  (Rabiner and 
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Gold, 1975). 

For the specified two-dimensional probability 
density 𝑤(𝑦1, 𝑦2) of the random process values that are 
𝑥𝑛 and 𝑥𝑛+1, the transition probabilities of the Markov 
model are determined as 

𝑃𝑖𝑗 =
∫ ∫ 𝑤(𝑦1, 𝑦2)𝑑𝑦2𝑑𝑦1

𝑔𝑗

𝑔𝑗−1

𝑔𝑖

𝑔𝑖−1

∫ ∫ 𝑤(𝑦1, 𝑦2)𝑑𝑦2𝑑𝑦1
∞

−∞
𝑔𝑖

𝑔𝑖−1

 (4) 

and the probabilities of initial values – as 

𝑞𝑖 = ∫ ∫ 𝑤(𝑦1, 𝑦2) d𝑦2𝑑𝑦1

∞

−∞

𝑔𝑖

𝑔𝑖−1

 (5) 

In a specific case, when the process 𝑥(𝑡) is stationary 
Gaussian one, one gets 

𝑤(𝑦1, 𝑦2) =
1

2𝜋𝜎2√1 − 𝑟2
× 

× 𝑒𝑥𝑝 [−
(𝑦1 − 𝑥̄)2 + 2𝑟(𝑦1 − 𝑥̄)(𝑦2 − 𝑥̄) + (𝑦2 − 𝑥̄)2

2𝜎2(1 − 𝑟2)
]  

(6) 

where 𝜎2 is the dispersion of the process 𝑥(𝑡), r is the 
correlation coefficient between the samples 𝑥𝑛 and 𝑥𝑛+1. 

A similar Markov model can be built on the 
experimental signal realization, if the sample size N is 
great enough. In this case, with obtained realization of 
the discrete random process 𝑧𝑛, 𝑛 = 1, 𝑁, the estimates 
of the transition probabilities 𝑃̃𝑖𝑗 can be found in terms 
of the transition numbers of the process values from 
𝑧𝑛−1 = 𝑖 to 𝑧𝑛 = 𝑗, 𝑛 = 2, 𝑁 as follows 

𝑃̃𝑖𝑗 = 𝑙𝑖𝑗 ∑ 𝑙𝑖𝑘

𝑀

𝑘=1

⁄  (7) 

For the estimates 𝑞̃𝑖 of the probabilities 𝑞𝑖 one gets 

𝑞̃𝑖 =
1

𝑁 − 1
∑ 𝑙𝑖𝑘

𝑀

𝑘=1

 (8) 

4. Random Number Generation Algorithm 

By the transition probabilities, theoretical 𝑃𝑖𝑗 or 
experimental 𝑃̃𝑖𝑗, the matrix of probability distributions 
[𝐹𝑖𝑗] ([𝐹̃𝑖𝑗]) is determined as 

𝐹𝑖𝑗 = ∑ 𝑃𝑖𝑚
𝑗
𝑚=1  or 𝐹̃𝑖𝑗 = ∑ 𝑃̃𝑖𝑚

𝑗
𝑚=1  (9) 

A sensor of independent pseudorandom (or random) 
numbers 𝜈𝑛, that are uniformly distributed within the 
interval [0,1], produces the n-th value, then selecting 
the next sample 𝑧𝑛. In cases when it occurs that 𝑧𝑛−1 = 𝑖, 
then the following value 𝑧𝑛 = 𝑗 is selected because j is 
the minimum value for which the inequality 

𝜈𝑛 < 𝐹𝑖𝑗 or 𝜈𝑛 < 𝐹̃𝑖𝑗 (10) 

is satisfied. Based on the numbers 𝜈𝑛, the integers 

𝜇𝑛 = {𝜈𝑛𝐾} (11) 

are determined obeying a uniform probability 
distribution and varying between 0 and 𝐾 − 1. Here {⋅} is 
the integer part, 𝐾 = 2𝑘 and k is the specified integer 
number equal to the number of bits of the binary code 
of the number 𝜇𝑛 used to index the elements of the 
array. 

As a pseudorandom number sensor, the 
programmable random number generator can use the 
standard procedure Random or similar. Pseudorandom 
numbers 𝜇𝑛 can be generated according to (11) or by a 
binary sequence (for example, M-sequence) generator 
implemented through shifters (Varakin, 1985). 
Random numbers 𝜇𝑛 can be also generated using a 
hardware noise source and comparator. 

The procedure (10) for each 𝑖 = 1, 𝑀 is calculated for 
all the possible numbers 𝜇𝑛 and the obtained values 𝑗 =

1, 𝑀 are stored in the one-dimensional array 𝑅𝑑 = 𝑗 with 
an index 

𝑑 = (𝑖 − 1)𝐾 + 𝜇𝑛. (12) 

The block diagram of the described algorithm for 
generating L pseudorandom numbers is shown in 
Figure 1a. At the start, the first value 𝑖 = 1 is selected (it 
may be any one from 1 to M). Then the integer 𝜇1 is 
generated for 𝑛 = 1, so that the index d of the array is 
determined and the number j is read at the address 
(array index) 𝑅𝑑. The resulting value is assigned to the 
variable 𝑧𝑛 = 𝑗 − 1 (so that the numbers are obtained out 
of the range from 0 to 𝑀 − 1) that is at the sensor 
output. 

In Figure 1b, there is presented the possible block 
diagram of the equivalent algorithm for generating 
random numbers through the two-dimensional array 
𝑗 = 𝑅𝑖𝜇𝑛

. 

As it can be seen, generating the next sample 
requires a minimum number of operations involving 
the generation of numbers 𝜇𝑛 and reading data from the 
storage device. Thus, a high sensor speed is provided 
for any two-dimensional probabilistic properties of the 
generated samples. 

5. Simulation Results 

Let us consider the pseudorandom number sensor 
based on the two-dimensional Gaussian probability 
distribution (6) with the correlation coefficient 𝑟 = 0.4 
and the quantization step 𝑑 = 10𝜎 𝑀⁄  (12). The transient 
probabilities are determined according to (4). The 
matrices 𝑃𝑖𝑗 in the form of a three-dimensional 
diagram under 𝑀 = 64 are presented in Figure 2a, while 
the corresponding probability distribution 𝐹𝑖𝑗 
calculated according to (9) can be seen in Figure 2b. 
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a)  b) 

Figure 1. The block diagram of the random number generating 
algorithm 

In Figure 3, the part of the array 𝑅𝑑 obtained 
according to (10) is graphically shown. Its indexes d are 
calculated by means of (12) and normalized to 2𝐾, while 
𝐾 = 14. The shift of the curves for different values of i is 
the result of the influence of the correlation coefficient. 

In Figure 4, there is shown a part of the realization 
of the digital samples generated by the pseudorandom 
number sensor, while in Fig. 5a their histogram is 
presented. 

In Figure 5a, by points, the theoretical probabilities 
are drawn that obviously well coincide with the 
corresponding experimental data. 

 
a) b) 

Figure 2. The probabilistic characteristics of the model 

 
Figure 3. The values of Rd array elements 

 
Figure 4. The realization of Gaussian pseudo random numbers with 
the specified probabilistic characteristics 

 
a) 

 
b) 

Figure 5. The histogram (a) and the correlation coefficient (b) of the 
generated samples 

In order to quantify to what degree the obtained and 
the theoretical statistical models fit together, the 
testing of 𝜒2 (Pirson) criterion (Law and Kelton, 2000; 
Ventsel and Ovcharov, 2000) is run to make sure that 
the generated realization obeys the Gaussian 
probability distribution. With the sample size 𝑁 = 220 ≈
106, the calculated value of 𝜒2 is 60.5. On the other hand, 
with the number of degrees of freedom 𝑀 − 1 = 63 and 
the alpha level 𝛼 = 0.01, the critical value of criterion is 
equal to 𝜒0

2 = 90 (Ventsel and Ovcharov, 2000). As it can 
be seen, 𝜒2 < 𝜒0

2, and, therefore, the hypothesis that the 
generated sample belongs to the Gaussian probability 
distribution is confirmed. 

In Figure 5b, by points, the values of the correlation 
coefficient 𝑟𝑘 are shown depending on the shifting of 
the samples k, while the dashed line represents the 
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corresponding theoretical values. One can see a good 
agreement between them. 

Now let us consider an example when the 
pseudorandom number sensor is designed and 
developed in terms of the probability density 
significantly different from the Gaussian two-
dimensional one. As such a probability density one 
chooses the function taking the form 

𝑤(𝑥, 𝑦) = 𝑠𝑖𝑛(𝑥 + 𝑦) 2⁄ ,  0 ≤ 𝑥, 𝑦 ≤ 𝜋 2⁄ . (13) 

The graph of the function (13) is shown in Figure 6a, 
while the correlation coefficient r of the simulated 
process is equal to –0.245. 

  
a) b) 

 
c) 

Figure 6. The probabilistic characteristics of the simulated process 

 
Figure 7. The values of Rd array elements 

In Fig. 6b, the three-dimensional diagram of the 
matrix of transition probabilities 𝑃𝑖𝑗 (4) is presented; in 
Fig. 6c, one can see the probability distribution 𝐹𝑖𝑗 (9); 
and in Figure 7, the partial graph of the array 𝑅𝑑 is 
demonstrated for the case when 𝑀 = 64 and 𝐾 = 14. 

During the simulation, the sequence of 
pseudorandom numbers is obtained that is shown in 
Figure 8a. In Figure 8b, by bars, the histogram of the 
simulated realization is presented when the sample 
size is 106, while by points there are drawn the 
corresponding values of the theoretical one-
dimensional probability density that well fit together 
with the experimental data. 

In Figure 9a, there is plotted the three-dimensional 
diagram of the matrix formed by joint probabilities of 
pairs of values 𝑃(𝑖, 𝑗) calculated using the probability 
density (13): 

 
a) 

 
b) 

Figure 8. The simulated realization (a) and the histogram (b) of the 
pseudorandom numbers with the specified non-Gaussian 
probability distribution 

 
a) b) 

Figure 9. The joint probabilities of values of the simulated non-
Gaussian process 

𝑃(𝑖, 𝑗) = ∫ ∫ 𝑤(𝑦1, 𝑦2)𝑑𝑦2𝑑𝑦1

𝑔𝑗

𝑔𝑗−1

𝑔𝑖

𝑔𝑖−1

 (14) 

Figure 9b presents the statistical estimation of these 
probabilities obtained by processing the simulated 
samples. 

The empirical correlation coefficient is equal to –
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0.244 that nearly coincides with the theoretical value. 
Thus, it can be concluded that high simulation accuracy 
is provided for various probabilistic properties of the 
simulated processes. During statistical simulation, it is 
established that small (5-10%) deviations of the 𝜈𝑛 (𝜇𝑛) 
number source from the uniform probability 
distribution do not lead to the marked performance 
degradation of the sensor. 

6. Conclusions 

The introduced pseudorandom number sequence 
sensor based on a simple Markov model of the 
simulated process provides the probabilistic and 
correlation properties of the generated numbers 
specified by a two-dimensional probability 
distribution. It allows a simple software 
implementation with a minimum number of 
operations independent of the simulated process while 
high statistical accuracy of the simulation is still 
achieved. Besides, it is possible to develop a Markov 
model based on the experimental realization of the 
sampled random process reproducing its two-
dimensional probabilistic properties. The considered 
algorithm can also be implemented in hardware in the 
form of a pseudorandom (random) number generator. 
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