Constrained-based discrete-event simulation of an assembly job shop in the offshore wind industry

  • Adolfo Lamas-Rodríguez 
  • Javier Pernas-Álvarez 
  • Inés Taracido-López  
  • Navantia, Ctra. de la Circunvalación s/n, Ferrol, 15403, Spain; Universidade da Coruña and UMI Navantia-UDC, Campus de Esteiro s/n, Ferrol, 15403, Spain.
  • b,c UMI Navantia-UDC, CIT Campus de Esteiro s/n, Ferrol, 15403, Spain
Cite as
Lamas-Rodríguez A., Pernas-Álvarez J., Taracido-López I. (2020). Constrained-based discrete-event simulation of an assembly job shop in the offshore wind industry. Proceedings of the 32nd European Modeling & Simulation Symposium (EMSS 2020), pp. 62-71. DOI: https://doi.org/10.46354/i3m.2020.emss.009

Abstract

The problem of assembly job shop scheduling is presented in this paper by means of a manufacturing process of semi-submersible foundations in a constrained-based environment. We developed a 3D discrete event simulation model which considered from resources and spatial restrictions to real schedules and project dates. The model allowed us to implement several proposed dispatching rules in order to validate the current construction strategy. We also performed an optimisation of some parametrised dispatching rules in the search of better schedules, according to pre-defined measures of performance. We eventually found significant reductions concerning the blockages produced in the process, whose avoidance may limit risks and yield profits with a view to project overlapping. The model developed may also be applied to new scenarios of the present case, as well as to future projects with similar construction strategies.

References

  1. Bard, J. F., Jia, S., Chacon, R., & Stuber, J. (2015). Integrating optimisation and simulation
    approaches for daily scheduling of assembly and test operations. International Journal of Production Research, 53(9), 2617–2632. https://doi.org/10.1080/00207543.2014.970713
  2. GmbH, S. M. L. P. (2020, March 23). Sustainability in jacket structures for offshore wind energy plants | Automated node welding, maintenance-free corrosion protection. Salzgitter Mannesmann Line Pipe GmbH. https://magazin.mannesmannlinepipe.com/en/04-2016/coverstory/energyplants/
  3. Hannon, M., Topham, E., Dixon, J., & Collu, M. (2019). Offshore wind, ready to float? Global and UK trends in the floating offshore wind market. https://doi.org/10.17868/69501
  4. Jia, S., Morrice, D. J., & Bard, J. F. (2019). A performance analysis of dispatch rules for
    semiconductor assembly & test operations. Journal of Simulation, 13(3), 163–180.
    https://doi.org/10.1080/17477778.2018.1453255
  5. König, M., Beißert, U., Steinhauer, D., & Bargstädt, H. (2007). Constraint-based Simulation of
    Outfitting Processes in Shipbuilding and Civil Engineering. Proceedings of the 6th EUROSIM
    Congress on Modeling and Simulation. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.462.6589
  6. Lamas-Rodríguez, A., Crespo-Pereira, D., & SánchezTutor, R. (2016). Discrete Events Simulation to improve manufacturing process of jackets offshore structures. 15th International Conference
    on Modeling and Applied Simulation, MAS 2016, 85–94.
  7. Maxwell, W. L., & Mehra, M. (1968). Multiple-factor rules for sequencing with assembly constraints. Naval Research Logistics Quarterly, 15(2), 241–254.
    https://doi.org/10.1002/nav.3800150209
  8. Natarajan, K., Mohanasundaram, K. M., Babu, B. S., Suresh, S., Raj, K. A. A. D., & Rajendran, C. (2007). Performance evaluation of priority dispatching rules in multi-level assembly job shops with jobs having weights for flowtime and tardiness. International Journal of Advanced Manufacturing Technology, 31(7–8), 751–761. https://doi.org/10.1007/s00170-005-0258-8
  9. Poudineh, R., Brown, C., Foley, B., Poudineh, R., Brown, C., & Foley, B. (2017). Global Offshore
    Wind Market. Economics of Offshore Wind Power, 2017, 15–31. https://doi.org/10.1007/978-3-319-66420-0_2
  10. Prajapat, N., & Tiwari, A. (2017). A review of assembly optimisation applications using discrete event simulation. International Journal of Computer Integrated Manufacturing, 30(2–3), 215–228. https://doi.org/10.1080/0951192X.2016.1145812
  11. Ramirez, L., Fraile, D., & Brindley, G. (2020). Offshore Wind in Europe - Key trends and statistics 2019. https://doi.org/10.1016/s1471-0846(02)80021-x
  12. Robinson, S. (2004). Simulation : the practice of model development and use.
  13. Thiagarajan, S., & Rajendran, C. (2005). Scheduling in dynamic assembly job-shops to minimize the sum of weighted earliness, weighted tardiness and weighted flowtime of jobs. Computers and Industrial Engineering, 49(4), 463 –503. https://doi.org/10.1016/j.cie.2005.06.005
  14. Varela-Vázquez, P., & Sánchez-Carreira, M. del C. (2017). Estimation of the potential effects of
    offshore wind on the Spanish economy. Renewable Energy, 111, 815–824.
    https://doi.org/10.1016/j.renene.2017.05.002