A Shannon entropy graph-based model to evaluate the operator mental workload involved in procedure-guided tasks

  • Andrea Lucchese 
  • Giorgio Mossa , 
  • Giovanni Mummolo , 
  • Francesco Paolo Sisto  
  • a,b,c,d  Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, Via Edoardo Orabona 4, Bari, 70126, Italy
Cite as
Lucchese A., Mossa G., Mummolo G., Sisto F.P. (2020). A Shannon entropy graph-based model to evaluate the operator mental workload involved in procedure-guided tasks. Proceedings of the 32nd European Modeling & Simulation Symposium (EMSS 2020), pp. 103-111. DOI: https://doi.org/10.46354/i3m.2020.emss.014

Abstract

Recent studies showed that an increasing number of procedures are available in industrial processes, in fields such as maintenance and safety. In many cases, the complexity of a procedure requires a decision-making process to evaluate the correct choice to be adopted in a specific situation. To this concern, the operator is subject to the mental workload to identify the proper strategy to be applied for each case. In the scientific literature, a model that allows evaluating the task complexity of a procedure, through the ‘Shannon Entropy’ applied to graphs, was proposed by J. Park. Similarly, the mental workload of an operator in performing cognitive-oriented tasks was studied by G. Salvendy. Consistently to these topics, the authors propose a new model to estimate the mental workload of an operator during the execution of cognitive-oriented tasks of safety or maintenance procedures. The model has been applied to a numerical simulation; results obtained showed how the complexity of cognitive-oriented tasks of safety or maintenance procedures allows affecting the mental workload. The model can be usefully adopted to design emergency (safety) or maintenance procedures by considering the expected mental workload of operators in performing cognitive-oriented tasks.

References

  1. Ante, G., Facchini, F., Mossa, G., & Digiesi, S. (2018). Developing a key performance indicators tree for lean and smart production systems. IFACPapersOnLine, 51(11), 13-18.
  2. Bi, S., & Salvendy, G. (1994). A proposed methodology for the prediction of mental workload, based on engineering system parameters. Work and Stress, 8(4), 355–371.
  3. Boenzi, F., Digiesi, S., Facchini, F., & Mummolo, G. (2016). Ergonomic improvement through job
    rotations in repetitive manual tasks in case of limited specialization and differentiated ergonomic requirements. IFAC-PapersOnLine, 49(12), 1667- 1672.
  4. Card, S. K., Moran, T. P., & Newell, A. (1986). The model human processor: an engineering model for human performance. In K. R. Boff, L. Kaufman, & R. J. Thomas (Eds.), Handbook of perception and human performance: Vol. 2. Cognitive Processes and Performance. Wiley.
  5. Davis, J. S., & Leblanc, R. J. (1988). A Study of the Applicability of Complexity Measures. IEEE
    Transactions on Software Engineering, 14(9), 1366–1372.
  6. Digiesi, S., Facchini, F., Mossa, G., & Mummolo, G. (2019), A mathematical model of human error probability for cognitive-oriented tasks. Proceedings of the Summer School Francesco Turco, 1, 423-429.
  7. Digiesi, S., Facchini, F., Mossa, G., & Mummolo, G. (2018). Minimizing and balancing ergonomic risk of workers of an assembly line by job rotation: A MINLP Model. International Journal of Industrial Engineering and Management, 9(3), 129-138.
  8. Facchini, F., Olésków-Szłapka, J., Ranieri, L., & Urbinati, A. (2020). A maturity model for logistics
    4.0: An empirical analysis and a roadmap for future research. Sustainability, 12 (1), 1-18
  9. Harris, R. M., Glenn, F., Iavecchia, H. P., & Zaklad, A. (1986). Human operator simulator. In W. Karwoski (Ed.), Trends in Ergonomic/Human Factors III (Part A).
  10. Hollnagel, E. (1998). Cognitive Reliability and Error Analysis Method (CREAM). In Cognitive Reliability and Error Analysis Method (CREAM). 
  11. Hwang, S. L., Barfield, W., Chang, T. C., & Salvendy, G. (1984). Integration of humans and computers in the operation and control of flexible manufacturing systems. International Journal of Production Research, 22(5), 841–856.
  12. International-Air-Transport-Association. (2018). Safety report 2017. 54th edition.
  13. Knight, N., & Aucar, J. (2010). Use of an anatomic marking form as an alternative to the Universal Protocol for Preventing Wrong Site, Wrong Procedure and Wrong Person Surgery. American Journal of Surgery, 200(6), 803–809.
  14. Levison, W. H. (1979). A model for mental workload in tasks requiring continuous information processing. In N. Moray (Ed.), Mental Workload: Its Theory and Measurement (pp. 189–218). Plenum. 
  15. Linton, P. M., Plamondon, B. D., Dick, A. O., Bittner, A. C., & Christ, R. E. (1989). Operator Workload for Military System Acquisition. In Applications of Human Performance Models to System Design (pp. 21–45).
  16. Miller, G. A. (1956). The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychological Review, 63(2), 81–97.
  17. Moray, N., Dessouky, M. I., Kijowski, B. A., & Adapathya, R. (1991). Strategic behavior, workload,
    and performance in task scheduling. Human Factors, 33(6), 607–629.
  18. Moray, Neville. (1988). Mental workload since 1979. International Review of Ergonomics, 2, 123–150. 
  19. Mowshowitz, A. (1968). Entropy and the complexity of graphs: I. An index of the relative complexity of a graph. The Bulletin of Mathematical Biophysics, 30, 175–204.
  20. Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design: Recent
    developments. Educational Psychologist, 38(1), 1–4.
  21. Park, J. (2009). The complexity of proceduralized tasks. In Springer Series in Reliability Engineering. 
  22. Park, J. (2014). Investigating the TACOM measure as a general tool for quantifying the complexity of procedure guided tasks. Reliability Engineering and System Safety, 129, 66–75.
  23. Park, J., Jeong, K., & Jung, W. (2005). Identifying cognitive complexity factors affecting the
    complexity of procedural steps in emergency operating procedures of a nuclear power plant.
    Reliability Engineering and System Safety, 89(2), 121–136.
  24. Park, J., & Jung, W. (2007). A study on the development of a task complexity measure for emergency operating procedures of nuclear power plants. Reliability Engineering and System Safety, 92(8), 1102–1116.
  25. Park, J., Jung, W., & Ha, J. (2001). Development of the step complexity measure for emergency operating procedures using entropy concepts. Reliability Engineering and System Safety, 71(2), 115–130.
  26. Rashevsky, N. (1955). Life, information theory, and topology. The Bulletin of Mathematical Biophysics, 17, 229–235.
  27. Rasmussen, J. (1974). The human data processor as a system component. Bits and pieces of a model. Risø National Laboratory-Roskilde, 1722.
  28. Senders, J. W. (1964). The Human Operator as a Monitor and Controller of Multidegree of Freedom Systems. IEEE Transactions on Human Factors in Electronics, 5(1), 2–5.
  29. Seong, P. H., Kang, H. G., Na, M. G., Kim, J. H., Heo, G., & Jung, Y. (2013). Advanced MMIS toward substantial reduction in human errors in NPPs. Nuclear Engineering and Technology, 45(2), 125–140.
  30. Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27(3), 379–423.
  31. Sheridan, T. B. (1988). Task Allocation and Supervisory Control. In Handbook of Human-Computer Interaction (pp. 159–173).
  32. Tulga, M. K., & Sheridan, T. B. (1980). Dynamic Decisions and Work Load in Multitask Supervisory Control. IEEE Transactions on Systems, Man and Cybernetics, 10(5), 217–232.
  33. Vidulich, M. A., Ward, G. F., & Schueren, J. (1991). Using the Subjective Workload Dominance (SWORD) technique for projective workload assessment. Human Factors, 33(6), 677–691.
  34. Wickens, C. D. (1991). Processing Resources in Attention. In D. L. Damos (Ed.), Multiple-task 
    performance (pp. 3–34). Taylor & Francis.
  35. Wischgoll, A., Pauli, C., & Reusser, K. (2019). High levels of cognitive and motivational contingency with increasing task complexity results in higher performance. Instructional Science, 47, 319–352.
  36. Xie, B., & Salvendy, G. (2000). Review and reappraisal of modelling and predicting mental workload in single and multi-task environments. Work and Stress, 14(1), 74–99.