

© 2020 The Authors. This article is an open access article distributed under the terms and conditions of the Creative
Commons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

112

32nd European Modeling & Simulation Symposium
17th International Multidisciplinary Modeling & Simulation Multiconference

ISSN 2724-0029 ISBN 978-88-85741-44-7 © 2020 The Authors.
DOI: 10.46354/i3m.2020.emss.015

Attaining global optimized solution by applying Q-
learning

Ghulam Muhammad Ali1,*, Asif Mansoor1, Shuai Liu1, Jacek Olearczyk1, Ahmed
Bouferguene2 and Mohamed Al-Hussein1

1Department of Civil and Environmental Engineering, University of Alberta, 9105 116 Street NW, Edmonton, T6H
2W2, Canada
2Campus Saint-Jean, University of Alberta, Edmonton, T6C 4G9, Canada

*Corresponding author. Email address: gmali@ualberta.ca

Abstract
The assembly of modular construction projects depends primarily on the use of heavy capacity cranes. The increase in usage of
heavy cranes is the impetus for the optimization of resources utilized for the crane work. One of the major cost drivers is the
design optimization process of such resources. Even for an initial mechanical/structural design prior to a prototype, the design
phase with finite element analysis (FEA) is time-consuming and extensive work. The greedy algorithm could be an answer to
these problems to accomplish the optimization in short period of time. In some of the complex cases, the greedy algorithm can
confine to the local optimum and thus, overlooking the global optimum. To avoid this, a model-free reinforcement learning (RL)
algorithm, Q-learning, is employed in this study to evaluate its suitability for use in the design optimization process with the use
of FEA. A hypothetical structural support design problem is used to formulate a framework for comparing the greedy algorithm
and Q-learning. The findings show that not only can Q-learning overcome the local optimum confinement of the greedy
algorithm, but it in fact can surpass the greedy algorithm along the progressive iteration, by refining policy and reward.

Keywords: Greedy algorithm; reinforcement learning; Q-learning; finite element analysis; structural design

1. Introduction

The modern heavy construction industry is gradually
adopting modularization as its primary design and
project delivery paradigm. The most noteworthy
change is the shifting of the most substantial portion of
work from onsite construction to offsite construction.
To further reduce the amount of onsite construction
work required, modules are designed and fabricated to
include an increasing number of functionalities and
packages (e.g., plumbing, electrical, finishing, etc.).
Therefore, maximizing the functionality of a module
leads to an increase in the weight of the module from
tens to hundreds of tons. The larger, heavier modules

are also having an impact on resource utilization for
crane work like crane mats, rigging gears, assisting
cranes, and trailers. Given this new weight constraint,
heavy cranes have evolved to be able to lift heavier
modules. However, this high crane capacity is
synonymous with cranes that have heavier weights and
increased structural complexity. Heavier cranes require
better crane ground support for safe crane operation.
To overcome this challenge, the crane industry in
Canada uses 2–3 layers of matting for crane work. The
layering of timber mats is motivated by the concept of
extra safety for crane stability on site. A study by
Occupational Safety and Health Administration, USA,
(OSHA) reported that, from 2000 to 2009 in the United

https://creativecommons.org/licenses/by-nc-nd/4.0/

Ali et al. | 113

States, approximately 50 deaths were caused by “Crane
Tipped Over”, which is directly associated with poor
ground support (Zhao, 2011). Recently, 937
construction workers lost their lives at work, of which
505 (54%) of those deaths were linked with mobile
crane work (Kan, Zhang, Fang, Anumba & Messner,
2018). To address this problem, the design of crane
mats needs to be revised to provide a better optimized
crane support solution, which can be accomplished
with the application of finite element analysis (FEA).
The traditional way is to do the design calculations, and
after getting the design ready, it is examined using FEA
for any known or unknown risks associated with the
design. These models are used by engineers and
designers as the basis for discussion during which
weaknesses are identified and improvements are
proposed. This is an extensive amount of work, which
can be shortened using the greedy algorithm to achieve
the optimized design solution (Cormen, Leiserson,
Rivest & Stein, 2009). But one of the drawbacks of the
greedy algorithm is that the agent, after reaching the
local optimum, gets confined to the local optimum
(Bang-Jensen, Gutin & Yeo, 2004; Gutin, Yeo &
Zverovich, 2002). To overcome this situation, the agent
needs to explore the area beyond the local optimum by
increasing the number of layers or steps for further
exploration (future steps). The greedy agent must
probe the layers down the heuristic tree for the
minimum or maximum point to proceed further,
similar to A* algorithm, without storing any data
(Doran & Michie, 1966). To avoid this scenario,
reinforcement learning (RL) is used in the present
study to accomplish the global optimal solution. A
hypothetical structural support model is used for
purposes of comparing the greedy algorithm and
model-free RL algorithm, Q-learning (Sutton & Burto,
2018; Watkins, 1989; Watkins & Dayan, 1992). The
study results show that Q-learning can easily overcome
the local optimum to obtain the global optimal point or
final state. Not only that, the cumulative time duration
for FEA to reach the final state also decreases as the
number of iterations increases. The results indicate
that the policy and reward value function get refined by
the RL agent by performing the act repeatedly. The
number of actions taken by the agent is also minimized
during the iterative process.

2. Literature review

The greedy algorithm is probably one of the most
widely used meta-heuristic optimization methods
used to identify an optimal location for problems that
are known to be time consuming when tackled with
deterministic methods. However, in some complex
situations, the greedy algorithm goes to a quarantine
state after landing at a local optimal location. This can
be surpassed if the user is aware of the number of layers
(future steps) down the greedy heuristic tree to explore
before taking a decision (Bang-Jensen et al, 2004;
Cormen et al, 2009).

RL is a branch of machine learning and like any other

machine learning paradigm, the concept of RL is based
on the core methodology of learning in nature. The
interaction of infant with the environment creates a
wealth of information portraying cause and effect,
which leads to the achievement of goals. Such
interactions are a major source of knowledge to decide
what to do next (Hilgard, Marquis & Kimble, 1961).
Taking the same behavior and approach into
consideration, RL can be considered for the
optimization problems to initiate an action or to
develop a strategy to achieve the goal, with the addition
of reward or punishment as the guideline for action
selection. RL is slightly different from supervised
learning due to the non-availability of a training
dataset, much like an infant who grasps knowledge
from the environment in absence of a training dataset.
The structure of RL is composed of four parts: policy, a
reward signal, a value function, and a model. A policy is
the way a RL agent is to behave at a given time. The
value function defines the amount of reward and
punishment the RL agent gets, and the model
(optional) mimics the behavior of the environment
(Sutton & Barto., 2018). The basic RL concept is shown
in Figure 1. Addition of model can expediate the process
of learning and convergence of policy and value
function.

Q-learning is one of the RL algorithms with a
model-free approach that can optimize the stochastic
states and rewards (Lillicrap et al, 2015; Sutton & Barto,
2018). Q-learning is based on a finite Markov decision
process (Bellman, 1957). Q-learning was first
introduced in 1989 (Watkins, 1989). The learning
process follows a similar pattern as that of temporal
difference (Sutton, 1988). The RL agent learns from the
current state reward or punishment and takes a
decision based on the expected future state and updates
the current state accordingly. The equation of Q-
learning is as shown in Eq. (1):

𝑄(𝑠𝑡, 𝑎𝑡) = 𝑄(𝑠, 𝑎𝑡)(1 − 𝛼) + 𝛼{𝑅𝑡 + 𝛾 𝑚𝑎𝑥𝑄𝑎(𝑠𝑡+1, 𝑎)} (1)

where 𝑄(𝑠𝑡 , 𝑎𝑡) is the value of Q at the state 𝑠𝑡 after
expediating the action 𝑎𝑡, 𝛼 is the learning rate, 𝛾 the
discount factor, 𝑅𝑡 the reward received by the agent at
state 𝑠𝑡 after taking the action 𝑎𝑡 based on the value
function for reward, 𝑎 the next action to reach 𝑠𝑡+1 and
𝑚𝑎𝑥𝑄𝑎 is the value of Q of the next state (from a set of
possible immediate future states) with maximum Q
value. This way, the value of Q for each state is refined
and updated with each episode. The policy of the RL
agent is to maximize the reward and to minimize the
steps (number of actions) in between. The action taken
by the agent depends on the future maximum Q value,
not the reward it will get at that state, so it is known as
an off-policy RL algorithm (Sutton & Barto, 2018;
Watkins, 1989; Watkins & Dayan, 1992).

114 | 32nd European Modeling & Simulation Symposium, EMSS 2020

Figure 1. Basics of reinforcement learning (RL)

Looking at the Q-learning algorithm, there are two
factors involved: learning rate 𝛼 and the discount factor
𝛾. Both can be any value between 0 and 1. The learning
rate determines how much the newly obtained
information overrides the previous collected
information. If the value of the learning rate is 0, the
agent will learn nothing. In contrast to that, the
learning rate of 1 drives the agent to consider only the
most recent information. The discount factor defines
the relevance of future reward. A value of 0 for the
discount factor makes the future value null and void
and the RL agent becomes “shortsighted” (Sutton &
Barto, 2018). On the other hand, a discount factor value
of 1 will urge the agent to grab future reward more
strongly, making it “farsighted” (Sutton & Barto,
2018). A lot of research work has been done to compare
the results with various learning and discount factor
combinations. Most researchers have used a learning
factor of 0.1 and a discount factor of 0.9 (Sutton &
Barto, 2018).

The same application of RL is used in this study to
train an agent to reach the global optimized location by
trial and error. As the agent proceeds with the
iterations, the value of Q is updated continuously. The
Q-table is updated for states involved in each episode
(i.e., each iteration) accordingly. The Q-learning will
motivate the value function for maximization and the
policy to the shortest path, decreasing the time
required to reach the global optimization solution. A
learning factor of 0.1 and a discount factor of 0.9 are
employed in this simulation.

3. Methodology

The methodology is divided into three main parts, the
hypothetical structural support design, the greedy
algorithm and its limitation, and the development of
the Q-learning algorithm.

3.1. Hypothetical structural support

A hypothetical design is formulated for the purposes of
comparing RL with the greedy algorithm in the context
of design optimization. A hypothetical steel plate of
0.25 m thick with the dimensions of 112 m × 112 m is
supported by four supports (as shown in Figure 2).
There are a couple of weights, forces, and moments
acting randomly and simultaneously on the plate as
shown in Figure 2 & Figure 3.

Figure 2. Basic configuration of steel plate with random objects

Figure 3. Steel plate with randomly acting forces and moments

The four supports are permanent at the corners of
the plate. There is another adjustable support, which is
meant to be placed anywhere under the plate (as shown
in Figure 4). There are 104 possible locations for the
adjustable support. The objective is to find the location
using an FEA platform, so that the deflection in the
steel plate is the minimum. ANSYS (19.2) is used as the
FEA platform for the simulation.

It is important to mention that this study only
consists of the comparison between greedy algorithm
and RL for design purposes. One of the applications in
future could be the design of a crane mat. The current
design problem is similar to crane mat design in that
there are many forces (weights), such as the crane
superstructure, crane boom, payload, counterweights,
and crane undercarriage, acting on a crane mat at
different locations. For a crane mat, the placement of a
supporting element, like H-beam, I-Beam or plates,
requires optimization given the variations in load and
crane radius. The research methodology described
herein, is intended to be used later with slight
modifications for the design optimization of a crane
mat for use under crawler crane tracks, with varying
loads and crane radiuses. The main purpose of crane
mats is to distribute the load acting on them with a

Ali et al. | 115

minimum amount of crane mat deflection. Therefore,
the objective of crane mat design and the current
design problem is to find the location of the support
(H-beam, I beam or plate in case of crane mat) to
achieve minimum deflection. Later, this objective can
be expanded by adding cost and fabrication constraints.
The surface area of the plate is assumed to be 112 m ×
112 m, instead of traditional mat dimensions (3.6 m ×
2.4 m), to observe and differentiate the variations in
greater detail. For crane mat design optimization, the
steel plate size will be reduced to match the traditional
crane mat dimensions.

Figure 4. Steel plate with adjustable support

The overall process is shown in Figure 5. The RL
agent is not aware of the model, it can only select the
action in the form of location of the adjustable support
and based on the action, it receives the reward and new
state to move on. ANSYS takes approximately 30–40
seconds on average to simulate each location of the

adjustable support and delivers the deflection of the
plate as the outcome of each state. The deflection in the
plate determines whether the action was favorable or
not, which in return, making use of the value function,
provides a scalar value of reward or punishment to the
agent.

Figure 5. Basics model of RL

The first approach was to explore all the possible
locations and the respective deflection. The topography
of the deflection with respect to each state is shown in
Figure 6. The latitudinal movement is stated as X-move
(100 steps), and the longitudinal movement is stated as
Y-move (100 steps). There are 10,000 combinations of
X-move and Y-move, as the position of the fifth
support under the plate, to minimize the deflection.
The optimal location is also indicated in Figure 6. The
total time taken by FEA to explore all the states was
101.94 hours, which is equal to 4.25 days in total.

Figure 6. All the possible states with deflection

116 | 32nd European Modeling & Simulation Symposium, EMSS 2020

3.2. Greedy algorithm approach and its limitations

For both RL and greedy algorithm, for current
contribution, it is assumed that the final deflection is
known, but not the final location of the support. The
easiest way to reach the optimal location starting from
any edge is to use the greedy algorithm; however, the
problem is that the greedy algorithm can confine to
local optimal location and the local optimum location
can become a sink for the greedy agent. This is the same
as in the case of this problem. There are many local
optimal locations. One of them is shown in Figure 7.

Figure 7. Local optimization location

The greedy algorithm agent can only transcend this
local optimization point by probing the heuristic tree
further below (future actions). It is not easy to foretell
the number of layers of the heuristic tree to be explored.
It can be a trial and error method to search the level
where the greedy algorithm can find the minimum to
maximum point to proceed further to the global
optimization point. For this problem, for some of the
local optimization locations, the greedy agent goes to
several steps down in the heuristic tree to find the path
towards the minimum deflection value (global
optimum).

3.3. Development of Q-learning algorithm

Due to the limitations of the greedy algorithm, RL is
explored. Q-learning is used as the RL agent to search
the minimum deflection. RL is a trade-off between
exploration and exploitation. If the maximum states
are not explored, the agent will promote for
exploration. As the percentage of explored states
increases, the RL agent switches from exploration to
exploitation for the refining of policy and reward value
function. The exploration for the RL agent is defined in
Eq. (2).

𝑃𝑡 =

{

 1 −

∑ 𝑠𝑥𝑗
𝑚
𝑗=1

∑ 𝑠𝑖
𝑛
𝑖=1

 𝑖𝑓
∑ 𝑠𝑥𝑗
𝑚
𝑗=1

∑ 𝑠𝑖
𝑛
𝑖=1

> 0.1

0.1 𝑖𝑓
∑ 𝑠𝑥𝑗
𝑚
𝑗=1

∑ 𝑠𝑖
𝑛
𝑖=1

≤ 0.1

 (2)

where 𝑃𝑡 is the probability for exploration at current
state, 𝑠𝑡, ∑ 𝑠𝑥𝑗

𝑚
𝑗=1 is the sum of the states explored after

reaching 𝑠𝑡 throughout all the episodes completed, and
∑ 𝑠𝑖
𝑛
𝑖=1 is the total states (𝑖, 𝑗 = 1,2,3,… ,10,000). As the

states explored increase, the probability of exploration
decreases, and agent tends to move toward exploitation
instead of exploration.

One of the major features of RL is the value function
for reward. There are two ways to define the reward
function, one is sparse reward function and the other
one is the shaping reward function. The sparse function
provides a large quantity of a scalar reward value after
reaching the final state. On the other hand, the shaping
reward function provides a fraction of the final reward
on each state, and increases the intensity of the reward
as the agent moves closer to the final state (Gullapalli &
Barto, 1992). The shaping reward function is used in the
present study to expediate the learning of the agent.
The shaping reward function is formulated in Eq. (3).

𝑅𝑡 = {
−(

𝐷𝑡 − 𝐷𝑓

𝐷𝑚𝑎𝑥 −𝐷𝑓
)

𝑠𝑓

 𝑖𝑓 (𝐷𝑡 − 𝐷𝑓) > 0

1000 𝑖𝑓 (𝐷𝑡 − 𝐷𝑓) = 0

 (3)

where 𝐷𝑡 is the deflection of plate at a state 𝑠𝑡, 𝐷𝑚𝑎𝑥
the maximum deflection, 𝐷𝑓 is the global optimized
deflection, and 𝑠𝑓 is the shaping factor. The shaping
factor can be of any real number. Results with various
shaping factors are explored in this research. As the RL
agent get closer to the minimum deflection 𝐷𝑓, the
reward it gets increases. To speed up the learning and
convergence (policy and value function), sparse reward
is also used when the agent reaches the global optimal
location, when (𝐷𝑡 − 𝐷𝑓) = 0. This sparse reward will
trickle down the effect in the form of updated Q value.

The Q-learning approach is formulated like the
greedy approach. The agent starts randomly from any
edge (400 options) and proceeds towards the final state
(global optimal location).

4. Results and discussion

For the greedy algorithm, in some of the cases, the
greedy agent needed to overcome the local optimum
location by exploring 20 steps further (in the future). If
the minimum deflection is known, it becomes easy for
the greedy agent to explore the future steps until it
comes out of the sink and proceeds towards the global
optimum location. Over 1,000 episodes, 318 times the
greedy agent looked 20 steps ahead to overcome the
local optimum sink, as shown in Figure 8.

Ali et al. | 117

Figure 8. Frequency of number of steps over 1,000 episodes

Q-learning is free of such drawbacks; however, the
main problem with Q-learning is that it requires state
exploration at the start and refines the Q-learning table
to proceed with exploitation. With each episode, the Q
value for the states involved in the episode are updated
towards reward and policy refinement. Due to its
exploration behavior at the start, the RL agent requires
more time to reach the global optimal location. The
greedy agent takes approximately 6.1 hours (average
over 1,000 episodes) to reach the global optimal
location, whereas, the RL agent needed approximately
30 hours to reach the final state in first episode. That
was due to the exploration, instead of exploitation. As
the RL agent moves from exploration to exploitation,
the RL agent outperforms the greedy algorithm. Figure
9 shows how quickly the RL agent overcomes the
greedy algorithm in searching and reaching the final
state. The RL agent learns the path, refines it, and
improves with each episode.

The outcome corresponding to various shaping
factors is also shown for comparison purposes in
Figure 9. The results show that the RL agent with a
shaping factor of 0.5 was slow in finding the final state.
The agent became efficient with a shaping factor of 1.5,
2, 2.5, or 3. A shaping factor above 1 was effective in
ramping up the RL agent’s learning process in this case.

Figure 9. Average episode time with various shaping factors

Another important aspect to observe was the
number of actions taken by the RL agent to reach the
final state (as shown in Figure 10). The RL agent with a
shaping factor of 1.5, 2, and 2.5 initiated fewer actions
per episode to reach the final state.

Figure 10. Average number of actions per episode

Based on the data obtained for the case example used
in the present study, the question arises as to which
shaping factor was most effective for the RL agent to
learn quickly, diminish the time required by shortening
the path towards the final state, and to maximize the
reward over episode. To that end, the product of
average time and average actions per episode can be
utilized to define the selection criteria. Figure 11 shows
that the value is minimum for a shaping factor of 2. This
means that for the current case study, a shaping factor
of 2 maximizes the learning process.

Moreover, an additional sensitivity analysis could
include the variation of states explored over 100
episodes, which can also provide the ranking for these
shaping factors. Figure 12 shows that the RL agent with
a shaping factor of 2 completed 100 episodes with just
89% states explored.

The RL agent needs to learn how to decrease the
average amount of time for each episode, which is the
outcome of the policy of the RL agent to maximize the
cumulative reward along each episode. The RL agent
refines the policy and value function after each episode.
The best example can be seen in this case, where the
policy maximizes the reward by minimizing the path
towards the final state along the number of episodes.

118 | 32nd European Modeling & Simulation Symposium, EMSS 2020

Figure 11. Product of average time and average actions per episode

Figure 12. Average states explored over 100 episodes

Figure 13 shows the trendlines for episode time and
reward over 100 episodes for the RL agent (with a
shaping factor of 2). The trendlines converge towards
the optimum for episode time and each episode’s
cumulative reward (value function).

The RL agent cannot surpass the greedy algorithm
approach for locating the global optimal point on the
first try (first episode). Nevertheless, the greedy agent
cannot overcome the local optimal location, until it
knows to search the steps further away from the local
optimal location. The greedy agent becomes stable
after overcoming the local optimal location. However,
for the RL agent, there is no dilemma of local optimal
location. It is important to mention that there are 400
starting points for greedy algorithm and RL agent. The
greedy algorithm, starting from stochastic starting
point for each iteration (after overcoming the local
optimal location), takes a uniform cumulative average
time to find the global optimal location. However, for
RL agent, the cumulative average time decreases along
the progression of episodes. After exploring the states,
the RL agent refines itself with each episode and
reaches the optimal location quicker compared to the
greedy algorithm.

Figure 13. Convergence of policy and value function along 100
episodes (shaping factor 2)

5. Conclusions

The application of RL in the construction industry is
new and has the potential to refine a design in a short
time. In general, researchers are exploring RL to
minimize the amount of time required for machine
design. One example is the use of RL for the design of a
rocket engine using ANSYS platform. The traditional
procedure consists of trial and error to fine tune the
parameters for the rocket engine design. To minimize
this development time, the researcher used RL with the
integration of FEA. A basic fluid dynamic problem was
developed with diverse parameters as input and output.
The input values were manipulated to obtain the
desired output values, following the norms of RL
(Mehr, 2019).

Following in those same footsteps, the authors of the
present study believe that RL can be used to minimize
the amount of time required for the extensive trial and
error and fine tuning of parameters involved in the
designing of a crane ground support mat. The
parameters used for the multi-objective optimization
problem will be the crane ground bearing pressure, soil
composition, soil capacity, design parameters and mat
configuration. The mat configuration and design
parameters consist of placement of beam, type of
beam, plate thickness, etc. It is important to note that

Ali et al. | 119

other parameters (transportation, fabrication
constraint, lifting constraints, etc.) can be added later
based on the available information.

In addition to crane mat design, the intention is to
develop a novel generic norm for the use of RL in
machine design. Machine design is a complex problem,
where many factors impact the design. Due to this
complexity, the procedure for machine design takes a
relatively long time from concept to the prototype. The
application of FEA in machine design was a great help,
but at the same time, the processing time for FEA
increases exponentially (“curse of dimensionality”)
with the addition of more design parameters. The back
and forth from manual design to FEA eats up a large
portion of the design engineer’s time. This time could
be saved by developing an algorithm that can mimic the
behavior of a design engineer.

Besides machine design, resource allocation is
another optimization problem that requires a lot of an
engineer’s time to finalize. RL can be helpful to shorten
this time. One of the applications could be the
optimization of crane mat layout on the construction
site. There could be multiple combinations for a set of
mats. The use of RL can refine the mat layout with
maximum area covered and minimum mat usage. This
could be a classic example of RL usage for optimization
problems.

References

Bang-Jensen, J., Gutin, G., & Yeo, A. (2004). When the
greedy algorithm fails. Discrete Optimization, 1(2),
121–127.
https://doi.org/10.1016/j.disopt.2004.03.007

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C.
(2009). Introduction to Algorithms (3rd ed.).
Cambridge Mass: MIT Press

Doran, J., & Michie, D. (1966). Experiments with the
Graph Traverser Program. Proceedings of The Royal
Society A: Mathematical, Physical and Engineering
Sciences, 294, 235–259. 10.1098/rspa.1966.0205

Gullapalli, V., & Barto, A. G. (1992). Shaping as a method
for accelerating reinforcement learning. Proceedings
of the 1992 IEEE International Symposium on
Intelligent Control, 554–559.
10.1109/ISIC.1992.225046

Gutin, G., Yeo, A., & Zverovich, A. (2002). Traveling
Salesman Should not be Greedy: Domination
Analysis of Greedy-Type Heuristics for the TSP.
Discrete Applied Mathematics, 117, 81–86.
10.1016/S0166-218X(01)00195-0

Hilgard, E. R., Marquis, D. G., & Kimble, G. A. (1961).
Hilgard and Marquis’ Conditioning and Learning. East
Norwalk, CT, US: Appleton-Century-Crofts, Inc.

Kan, C., Zhang, P., Fang, Y., Anumba, C., & Messner, J.
(2018). A Taxonomic Analysis of Mobile Crane
Fatalities for CPS-based Simulation. 17th

International Conference on Computing in Civil and
Building Engineering. Retrieved from
http://programme.exordo.com/icccbe2018/delegat
es/presentation/253/

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., Silver, D., & Wierstra, D. (2015).
Continuous control with deep reinforcement
learning. ArXiv Preprint ArXiv:1509.02971. Retrieved
from https://arxiv.org/abs/1509.02971

Mehr, E. (2019, April 9). Using Reinforcement Learning to
Design a Better Rocket Engine. Retrieved from
https://blog.insightdatascience.com/using-
reinforcement-learning-to-design-a-better-
rocket-engine-4dfd1770497a

Richard Bellman. (1957). A Markovian Decision
Process. Journal of Mathematics and Mechanics, 6(4),
679–684. Retrieved from
www.jstor.org/stable/24900506

Sutton, R. S. (1988). Learning to Predict by the Method
of Temporal Differences. Machine Learning, 3, 9–44.
10.1007/BF00115009

Sutton, R. S., & Barto, A. G. (2018). Reinforcement
Learning: An Introduction (2nd ed.). Cambridge,
Mass: MIT press. Retrieved from
http://incompleteideas.net/book/RLbook2020.pdf

Watkins, C. (1989). Learning from Delayed Rewards
[Doctoral dissertation, King’s College, Cambridge,
UK]. University of Cambridge.
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf

Watkins, C., & Dayan, P. (1992). Technical Note: Q-
Learning. Machine Learning, 8, 279–292.
10.1007/BF00992698

Zhao, Q. (2011). Cause Analysis of U.S. Crane-related
Accidents [Master Dissertation, University of
Florida, USA]. UF Theses & Dissertations.
http://ufdc.ufl.edu/UFE0042972/00001

http://programme.exordo.com/icccbe2018/delegates/presentation/253/
http://programme.exordo.com/icccbe2018/delegates/presentation/253/

