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Abstract 
The assembly of modular construction projects depends primarily on the use of heavy capacity cranes. The increase in usage of 
heavy cranes is the impetus for the optimization of resources utilized for the crane work. One of the major cost drivers is the 
design optimization process of such resources. Even for an initial mechanical/structural design prior to a prototype, the design 
phase with finite element analysis (FEA) is time-consuming and extensive work. The greedy algorithm could be an answer to 
these problems to accomplish the optimization in short period of time. In some of the complex cases, the greedy algorithm can 
confine to the local optimum and thus, overlooking the global optimum. To avoid this, a model-free reinforcement learning (RL) 
algorithm, Q-learning, is employed in this study to evaluate its suitability for use in the design optimization process with the use 
of FEA. A hypothetical structural support design problem is used to formulate a framework for comparing the greedy algorithm 
and Q-learning. The findings show that not only can Q-learning overcome the local optimum confinement of the greedy 
algorithm, but it in fact can surpass the greedy algorithm along the progressive iteration, by refining policy and reward. 
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1. Introduction 

The modern heavy construction industry is gradually 
adopting modularization as its primary design and 
project delivery paradigm. The most noteworthy 
change is the shifting of the most substantial portion of 
work from onsite construction to offsite construction. 
To further reduce the amount of onsite construction 
work required, modules are designed and fabricated to 
include an increasing number of functionalities and 
packages (e.g., plumbing, electrical, finishing, etc.). 
Therefore, maximizing the functionality of a module 
leads to an increase in the weight of the module from 
tens to hundreds of tons. The larger, heavier modules 

are also having an impact on resource utilization for 
crane work like crane mats, rigging gears, assisting 
cranes, and trailers. Given this new weight constraint, 
heavy cranes have evolved to be able to lift heavier 
modules. However, this high crane capacity is 
synonymous with cranes that have heavier weights and 
increased structural complexity. Heavier cranes require 
better crane ground support for safe crane operation. 
To overcome this challenge, the crane industry in 
Canada uses 2–3 layers of matting for crane work. The 
layering of timber mats is motivated by the concept of 
extra safety for crane stability on site. A study by 
Occupational Safety and Health Administration, USA, 
(OSHA) reported that, from 2000 to 2009 in the United 
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States, approximately 50 deaths were caused by “Crane 
Tipped Over”, which is directly associated with poor 
ground support (Zhao, 2011). Recently, 937 
construction workers lost their lives at work, of which 
505 (54%) of those deaths were linked with mobile 
crane work (Kan, Zhang, Fang, Anumba & Messner, 
2018). To address this problem, the design of crane 
mats needs to be revised to provide a better optimized 
crane support solution, which can be accomplished 
with the application of finite element analysis (FEA). 
The traditional way is to do the design calculations, and 
after getting the design ready, it is examined using FEA 
for any known or unknown risks associated with the 
design. These models are used by engineers and 
designers as the basis for discussion during which 
weaknesses are identified and improvements are 
proposed. This is an extensive amount of work, which 
can be shortened using the greedy algorithm to achieve 
the optimized design solution  (Cormen, Leiserson, 
Rivest & Stein, 2009). But one of the drawbacks of the 
greedy algorithm is that the agent, after reaching the 
local optimum, gets confined to the local optimum 
(Bang-Jensen, Gutin & Yeo, 2004; Gutin, Yeo & 
Zverovich, 2002). To overcome this situation, the agent 
needs to explore the area beyond the local optimum by 
increasing the number of layers or steps for further 
exploration (future steps). The greedy agent must 
probe the layers down the heuristic tree for the 
minimum or maximum point to proceed further, 
similar to A* algorithm, without storing any data 
(Doran & Michie, 1966). To avoid this scenario, 
reinforcement learning (RL) is used in the present 
study to accomplish the global optimal solution. A 
hypothetical structural support model is used for 
purposes of comparing the greedy algorithm and 
model-free RL algorithm, Q-learning (Sutton & Burto, 
2018; Watkins, 1989; Watkins & Dayan, 1992). The 
study results show that Q-learning can easily overcome 
the local optimum to obtain the global optimal point or 
final state. Not only that, the cumulative time duration 
for FEA to reach the final state also decreases as the 
number of iterations increases. The results indicate 
that the policy and reward value function get refined by 
the RL agent by performing the act repeatedly. The 
number of actions taken by the agent is also minimized 
during the iterative process. 

2. Literature review 

The greedy algorithm is probably one of the most 
widely used meta-heuristic optimization methods 
used to identify an optimal location for problems that 
are known to be time consuming when tackled with 
deterministic methods. However, in some complex 
situations, the greedy algorithm goes to a quarantine 
state after landing at a local optimal location. This can 
be surpassed if the user is aware of the number of layers 
(future steps) down the greedy heuristic tree to explore 
before taking a decision (Bang-Jensen et al, 2004; 
Cormen et al, 2009).  

RL is a branch of machine learning and like any other 

machine learning paradigm, the concept of RL is based 
on the core methodology of learning in nature. The 
interaction of infant with the environment creates a 
wealth of information portraying cause and effect, 
which leads to the achievement of goals. Such 
interactions are a major source of knowledge to decide 
what to do next (Hilgard, Marquis & Kimble, 1961). 
Taking the same behavior and approach into 
consideration, RL can be considered for the 
optimization problems to initiate an action or to 
develop a strategy to achieve the goal, with the addition 
of reward or punishment as the guideline for action 
selection. RL is slightly different from supervised 
learning due to the non-availability of a training 
dataset, much like an infant who grasps knowledge 
from the environment in absence of a training dataset. 
The structure of RL is composed of four parts: policy, a 
reward signal, a value function, and a model. A policy is 
the way a RL agent is to behave at a given time. The 
value function defines the amount of reward and 
punishment the RL agent gets, and the model 
(optional) mimics the behavior of the environment 
(Sutton & Barto., 2018). The basic RL concept is shown 
in Figure 1. Addition of model can expediate the process 
of learning and convergence of policy and value 
function.  

Q-learning is one of the RL algorithms with a 
model-free approach that can optimize the stochastic 
states and rewards  (Lillicrap et al, 2015; Sutton & Barto, 
2018). Q-learning is based on a finite Markov decision 
process (Bellman, 1957). Q-learning was first 
introduced in 1989 (Watkins, 1989). The learning 
process follows a similar pattern as that of temporal 
difference (Sutton, 1988). The RL agent learns from the 
current state reward or punishment and takes a 
decision based on the expected future state and updates 
the current state accordingly. The equation of Q-
learning is as shown in Eq. (1): 

𝑄(𝑠𝑡, 𝑎𝑡) = 𝑄(𝑠, 𝑎𝑡)(1 − 𝛼) + 𝛼{𝑅𝑡 + 𝛾 𝑚𝑎𝑥𝑄𝑎(𝑠𝑡+1, 𝑎)} (1) 

where 𝑄(𝑠𝑡 , 𝑎𝑡) is the value of Q at the state 𝑠𝑡 after 
expediating the action 𝑎𝑡, 𝛼 is the learning rate, 𝛾 the 
discount factor, 𝑅𝑡 the reward received by the agent at 
state 𝑠𝑡 after taking the action 𝑎𝑡 based on the value 
function for reward, 𝑎 the next action to reach 𝑠𝑡+1 and 
𝑚𝑎𝑥𝑄𝑎 is the value of Q of the next state (from a set of 
possible immediate future states) with maximum Q 
value. This way, the value of Q for each state is refined 
and updated with each episode. The policy of the RL 
agent is to maximize the reward and to minimize the 
steps (number of actions) in between. The action taken 
by the agent depends on the future maximum Q value, 
not the reward it will get at that state, so it is known as 
an off-policy RL algorithm (Sutton & Barto, 2018; 
Watkins, 1989; Watkins & Dayan, 1992). 
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Figure 1. Basics of reinforcement learning (RL) 

Looking at the Q-learning algorithm, there are two 
factors involved: learning rate 𝛼 and the discount factor 
𝛾. Both can be any value between 0 and 1. The learning 
rate determines how much the newly obtained 
information overrides the previous collected 
information. If the value of the learning rate is 0, the 
agent will learn nothing. In contrast to that, the 
learning rate of 1 drives the agent to consider only the 
most recent information. The discount factor defines 
the relevance of future reward. A value of 0 for the 
discount factor makes the future value null and void 
and the RL agent becomes “shortsighted” (Sutton & 
Barto, 2018). On the other hand, a discount factor value 
of 1 will urge the agent to grab future reward more 
strongly, making it “farsighted” (Sutton & Barto, 
2018). A lot of research work has been done to compare 
the results with various learning and discount factor 
combinations. Most researchers have used a learning 
factor of 0.1 and a discount factor of 0.9 (Sutton & 
Barto, 2018).  

The same application of RL is used in this study to 
train an agent to reach the global optimized location by 
trial and error. As the agent proceeds with the 
iterations, the value of Q is updated continuously. The 
Q-table is updated for states involved in each episode 
(i.e., each iteration) accordingly. The Q-learning will 
motivate the value function for maximization and the 
policy to the shortest path, decreasing the time 
required to reach the global optimization solution. A 
learning factor of 0.1 and a discount factor of 0.9 are 
employed in this simulation.  

3. Methodology 

The methodology is divided into three main parts, the 
hypothetical structural support design, the greedy 
algorithm and its limitation, and the development of 
the Q-learning algorithm. 

3.1. Hypothetical structural support 

A hypothetical design is formulated for the purposes of 
comparing RL with the greedy algorithm in the context 
of design optimization. A hypothetical steel plate of 
0.25 m thick with the dimensions of 112 m × 112 m is 
supported by four supports (as shown in Figure 2). 
There are a couple of weights, forces, and moments 
acting randomly and simultaneously on the plate as 
shown in Figure 2 & Figure 3.  

 
Figure 2. Basic configuration of steel plate with random objects 

 
Figure 3. Steel plate with randomly acting forces and moments 

The four supports are permanent at the corners of 
the plate. There is another adjustable support, which is 
meant to be placed anywhere under the plate (as shown 
in Figure 4). There are 104 possible locations for the 
adjustable support. The objective is to find the location 
using an FEA platform, so that the deflection in the 
steel plate is the minimum. ANSYS (19.2) is used as the 
FEA platform for the simulation.  

It is important to mention that this study only 
consists of the comparison between greedy algorithm 
and RL for design purposes. One of the applications in 
future could be the design of a crane mat. The current 
design problem is similar to crane mat design in that 
there are many forces (weights), such as the crane 
superstructure, crane boom, payload, counterweights, 
and crane undercarriage, acting on a crane mat at 
different locations. For a crane mat, the placement of a 
supporting element, like H-beam, I-Beam or plates, 
requires optimization given the variations in load and 
crane radius. The research methodology described 
herein, is intended to be used later with slight 
modifications for the design optimization of a crane 
mat for use under crawler crane tracks, with varying 
loads and crane radiuses. The main purpose of crane 
mats is to distribute the load acting on them with a 
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minimum amount of crane mat deflection. Therefore, 
the objective of crane mat design and the current 
design problem is to find the location of the support 
(H-beam, I beam or plate in case of crane mat) to 
achieve minimum deflection. Later, this objective can 
be expanded by adding cost and fabrication constraints. 
The surface area of the plate is assumed to be 112 m × 
112 m, instead of traditional mat dimensions (3.6 m × 
2.4 m), to observe and differentiate the variations in 
greater detail. For crane mat design optimization, the 
steel plate size will be reduced to match the traditional 
crane mat dimensions.  

 
Figure 4. Steel plate with adjustable support 

The overall process is shown in Figure 5. The RL 
agent is not aware of the model, it can only select the 
action in the form of location of the adjustable support 
and based on the action, it receives the reward and new 
state to move on. ANSYS takes approximately 30–40 
seconds on average to simulate each location of the 

adjustable support and delivers the deflection of the 
plate as the outcome of each state. The deflection in the 
plate determines whether the action was favorable or 
not, which in return, making use of the value function, 
provides a scalar value of reward or punishment to the 
agent.  

 
Figure 5. Basics model of RL 

The first approach was to explore all the possible 
locations and the respective deflection. The topography 
of the deflection with respect to each state is shown in 
Figure 6. The latitudinal movement is stated as X-move 
(100 steps), and the longitudinal movement is stated as 
Y-move (100 steps). There are 10,000 combinations of 
X-move and Y-move, as the position of the fifth 
support under the plate, to minimize the deflection. 
The optimal location is also indicated in Figure 6. The 
total time taken by FEA to explore all the states was 
101.94 hours, which is equal to 4.25 days in total.  

 

Figure 6. All the possible states with deflection 



116 | 32nd European Modeling & Simulation Symposium, EMSS 2020 
 

 

 

3.2. Greedy algorithm approach and its limitations 

For both RL and greedy algorithm, for current 
contribution, it is assumed that the final deflection is 
known, but not the final location of the support. The 
easiest way to reach the optimal location starting from 
any edge is to use the greedy algorithm; however, the 
problem is that the greedy algorithm can confine to 
local optimal location and the local optimum location 
can become a sink for the greedy agent. This is the same 
as in the case of this problem. There are many local 
optimal locations. One of them is shown in Figure 7.  

 
Figure 7. Local optimization location 

The greedy algorithm agent can only transcend this 
local optimization point by probing the heuristic tree 
further below (future actions). It is not easy to foretell 
the number of layers of the heuristic tree to be explored. 
It can be a trial and error method to search the level 
where the greedy algorithm can find the minimum to 
maximum point to proceed further to the global 
optimization point. For this problem, for some of the 
local optimization locations, the greedy agent goes to 
several steps down in the heuristic tree to find the path 
towards the minimum deflection value (global 
optimum). 

3.3. Development of Q-learning algorithm 

Due to the limitations of the greedy algorithm, RL is 
explored. Q-learning is used as the RL agent to search 
the minimum deflection. RL is a trade-off between 
exploration and exploitation. If the maximum states 
are not explored, the agent will promote for 
exploration. As the percentage of explored states 
increases, the RL agent switches from exploration to 
exploitation for the refining of policy and reward value 
function. The exploration for the RL agent is defined in 
Eq. (2). 

𝑃𝑡 =

{
 
 

 
 1 −

∑ 𝑠𝑥𝑗
𝑚
𝑗=1

∑ 𝑠𝑖
𝑛
𝑖=1

                      𝑖𝑓 
∑ 𝑠𝑥𝑗
𝑚
𝑗=1

∑ 𝑠𝑖
𝑛
𝑖=1

> 0.1

0.1                                      𝑖𝑓 
∑ 𝑠𝑥𝑗
𝑚
𝑗=1

∑ 𝑠𝑖
𝑛
𝑖=1

≤ 0.1

 (2) 

where 𝑃𝑡 is the probability for exploration at current 
state, 𝑠𝑡, ∑ 𝑠𝑥𝑗

𝑚
𝑗=1  is the sum of the states explored after 

reaching 𝑠𝑡 throughout all the episodes completed, and 
∑ 𝑠𝑖
𝑛
𝑖=1  is the total states (𝑖, 𝑗 = 1,2,3,… ,10,000). As the 

states explored increase, the probability of exploration 
decreases, and agent tends to move toward exploitation 
instead of exploration.  

One of the major features of RL is the value function 
for reward. There are two ways to define the reward 
function, one is sparse reward function and the other 
one is the shaping reward function. The sparse function 
provides a large quantity of a scalar reward value after 
reaching the final state. On the other hand, the shaping 
reward function provides a fraction of the final reward 
on each state, and increases the intensity of the reward 
as the agent moves closer to the final state (Gullapalli & 
Barto, 1992). The shaping reward function is used in the 
present study to expediate the learning of the agent. 
The shaping reward function is formulated in Eq. (3). 

𝑅𝑡 = {
−(

𝐷𝑡 − 𝐷𝑓

𝐷𝑚𝑎𝑥 −𝐷𝑓
)

𝑠𝑓

               𝑖𝑓 (𝐷𝑡 − 𝐷𝑓) > 0

1000                                        𝑖𝑓 (𝐷𝑡 − 𝐷𝑓) = 0

 (3) 

where 𝐷𝑡 is the deflection of plate at a state 𝑠𝑡, 𝐷𝑚𝑎𝑥 
the maximum deflection, 𝐷𝑓 is the global optimized 
deflection, and 𝑠𝑓 is the shaping factor. The shaping 
factor can be of any real number. Results with various 
shaping factors are explored in this research. As the RL 
agent get closer to the minimum deflection 𝐷𝑓, the 
reward it gets increases. To speed up the learning and 
convergence (policy and value function), sparse reward 
is also used when the agent reaches the global optimal 
location, when (𝐷𝑡 − 𝐷𝑓) = 0. This sparse reward will 
trickle down the effect in the form of updated Q value.  

The Q-learning approach is formulated like the 
greedy approach. The agent starts randomly from any 
edge (400 options) and proceeds towards the final state 
(global optimal location). 

4. Results and discussion 

For the greedy algorithm, in some of the cases, the 
greedy agent needed to overcome the local optimum 
location by exploring 20 steps further (in the future). If 
the minimum deflection is known, it becomes easy for 
the greedy agent to explore the future steps until it 
comes out of the sink and proceeds towards the global 
optimum location. Over 1,000 episodes, 318 times the 
greedy agent looked 20 steps ahead to overcome the 
local optimum sink, as shown in Figure 8.  
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Figure 8. Frequency of number of steps over 1,000 episodes 

Q-learning is free of such drawbacks; however, the 
main problem with Q-learning is that it requires state 
exploration at the start and refines the Q-learning table 
to proceed with exploitation. With each episode, the Q 
value for the states involved in the episode are updated 
towards reward and policy refinement. Due to its 
exploration behavior at the start, the RL agent requires 
more time to reach the global optimal location. The 
greedy agent takes approximately 6.1 hours (average 
over 1,000 episodes) to reach the global optimal 
location, whereas, the RL agent needed approximately 
30 hours to reach the final state in first episode. That 
was due to the exploration, instead of exploitation. As 
the RL agent moves from exploration to exploitation, 
the RL agent outperforms the greedy algorithm. Figure 
9 shows how quickly the RL agent overcomes the 
greedy algorithm in searching and reaching the final 
state. The RL agent learns the path, refines it, and 
improves with each episode. 

The outcome corresponding to various shaping 
factors is also shown for comparison purposes in 
Figure 9. The results show that the RL agent with a 
shaping factor of 0.5 was slow in finding the final state. 
The agent became efficient with a shaping factor of 1.5, 
2, 2.5, or 3. A shaping factor above 1 was effective in 
ramping up the RL agent’s learning process in this case.  

 

Figure 9. Average episode time with various shaping factors 

Another important aspect to observe was the 
number of actions taken by the RL agent to reach the 
final state (as shown in Figure 10). The RL agent with a 
shaping factor of 1.5, 2, and 2.5 initiated fewer actions 
per episode to reach the final state.  

 

Figure 10. Average number of actions per episode  

Based on the data obtained for the case example used 
in the present study, the question arises as to which 
shaping factor was most effective for the RL agent to 
learn quickly, diminish the time required by shortening 
the path towards the final state, and to maximize the 
reward over episode. To that end, the product of 
average time and average actions per episode can be 
utilized to define the selection criteria. Figure 11 shows 
that the value is minimum for a shaping factor of 2. This 
means that for the current case study, a shaping factor 
of 2 maximizes the learning process.  

Moreover, an additional sensitivity analysis could 
include the variation of states explored over 100 
episodes, which can also provide the ranking for these 
shaping factors. Figure 12 shows that the RL agent with 
a shaping factor of 2 completed 100 episodes with just 
89% states explored.  

The RL agent needs to learn how to decrease the 
average amount of time for each episode, which is the 
outcome of the policy of the RL agent to maximize the 
cumulative reward along each episode. The RL agent 
refines the policy and value function after each episode. 
The best example can be seen in this case, where the 
policy maximizes the reward by minimizing the path 
towards the final state along the number of episodes.  
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Figure 11. Product of average time and average actions per episode 

 

Figure 12. Average states explored over 100 episodes 

Figure 13 shows the trendlines for episode time and 
reward over 100 episodes for the RL agent (with a 
shaping factor of 2). The trendlines converge towards 
the optimum for episode time and each episode’s 
cumulative reward (value function). 

The RL agent cannot surpass the greedy algorithm 
approach for locating the global optimal point on the 
first try (first episode). Nevertheless, the greedy agent 
cannot overcome the local optimal location, until it 
knows to search the steps further away from the local 
optimal location. The greedy agent becomes stable 
after overcoming the local optimal location. However, 
for the RL agent, there is no dilemma of local optimal 
location. It is important to mention that there are 400 
starting points for greedy algorithm and RL agent. The 
greedy algorithm, starting from stochastic starting 
point for each iteration (after overcoming the local 
optimal location), takes a uniform cumulative average 
time to find the global optimal location. However, for 
RL agent, the cumulative average time decreases along 
the progression of episodes. After exploring the states, 
the RL agent refines itself with each episode and 
reaches the optimal location quicker compared to the 
greedy algorithm.  

 

Figure 13. Convergence of policy and value function along 100 
episodes (shaping factor 2) 

5. Conclusions 

The application of RL in the construction industry is 
new and has the potential to refine a design in a short 
time. In general, researchers are exploring RL to 
minimize the amount of time required for machine 
design. One example is the use of RL for the design of a 
rocket engine using ANSYS platform. The traditional 
procedure consists of trial and error to fine tune the 
parameters for the rocket engine design. To minimize 
this development time, the researcher used RL with the 
integration of FEA. A basic fluid dynamic problem was 
developed with diverse parameters as input and output. 
The input values were manipulated to obtain the 
desired output values, following the norms of RL 
(Mehr, 2019). 

Following in those same footsteps, the authors of the 
present study believe that RL can be used to minimize 
the amount of time required for the extensive trial and 
error and fine tuning of parameters involved in the 
designing of a crane ground support mat. The 
parameters used for the multi-objective optimization 
problem will be the crane ground bearing pressure, soil 
composition, soil capacity, design parameters and mat 
configuration. The mat configuration and design 
parameters consist of placement of beam, type of 
beam, plate thickness, etc. It is important to note that 
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other parameters (transportation, fabrication 
constraint, lifting constraints, etc.) can be added later 
based on the available information.  

In addition to crane mat design, the intention is to 
develop a novel generic norm for the use of RL in 
machine design. Machine design is a complex problem, 
where many factors impact the design. Due to this 
complexity, the procedure for machine design takes a 
relatively long time from concept to the prototype. The 
application of FEA in machine design was a great help, 
but at the same time, the processing time for FEA 
increases exponentially (“curse of dimensionality”) 
with the addition of more design parameters. The back 
and forth from manual design to FEA eats up a large 
portion of the design engineer’s time. This time could 
be saved by developing an algorithm that can mimic the 
behavior of a design engineer. 

Besides machine design, resource allocation is 
another optimization problem that requires a lot of an 
engineer’s time to finalize. RL can be helpful to shorten 
this time. One of the applications could be the 
optimization of crane mat layout on the construction 
site. There could be multiple combinations for a set of 
mats. The use of RL can refine the mat layout with 
maximum area covered and minimum mat usage. This 
could be a classic example of RL usage for optimization 
problems. 
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