Efficiency of increasing of the track speed using simulation in Opentrack

  • Petr Nachtigall 
  • Erik Tischer 
  • a,b,  University of Pardubice, Faculty of Transport Engineering, Department of Transport Technology and Control, Studentská 95, 532 10 Pardubice
Cite as
Nachtigall P., Tischer E. (2020). Efficiency of increasing of the track speed using simulation in Opentrack. Proceedings of the 32nd European Modeling & Simulation Symposium (EMSS 2020), pp. 130-136. DOI: https://doi.org/10.46354/i3m.2020.emss.017

Abstract

In this paper the simulation in SW OpenTrack is used to analyze the ride of predefined trainsets on model of hypothetic infrastructure in order to find out what the track speed is effective in terms of shortening the driving time, traction energy consumption and other operational indicators. The next studied variable was the distance between two stops. The simulation results then provide recommendations for future modifications to the infrastructure.

References

  1. Blanquart, C., Koning, M. 2017. The local economic impacts of high-speed railways: theories and facts. European Transport Research Review. Available from:  https://link.springer.com/article/10.1007/s12544-017-0233-0. [Accessed: 20. 2. 2020.]
  2. Chang, Y. Z., Dong S. C. 2017. Study on post evaluation of High-speed railway based on FAH and MATLAB simulation calculation. TEHNICKI VJESNIK. Available from:
    https://doi.org/10.1016/j.trc.2018.08.009.%200968-090X. [Accessed: 1. 7. 2020.]
  3. Chen, Y., Guo, H. G., Ai, Y. P., He, H. 2019. Study on energy consumption of multi-trains tracking on long heavy. IOP Conference Series: Earth and Environmental Science. Available from:
    https://iopscience.iop.org/article/10.1088/1755-1315/267/4/042029/pdf. [Accessed: 22. 4. 2020.]
  4. Fernández-Rodríguez, A. 2018. Balancing energy consumption and risk of delay in high speed trains: A three-objective real-time eco-driving algorithm with fuzzy parameters. Transportation Research Part C. Available from: https://doi.org/10.1016/j.trc.2018.08.009.%200968-090X. [Accessed: 28. 1. 2020.]
  5. Huerlimann D.,Nash A. B. 2019. OPENTRACK Simulation of Railway Networks Version 1.3. Zurich: ETH Zurich, Institute of Transport Planning and Systems.
  6. Hruban, I., Nachtigall, P., Štěpán, O. 2015. Přínosy zavedení ETCS z pohledu brzdných křivek.
    Vědeckotechnický sborník ČD. Available from:  https://vts.cd.cz/documents/168518/195360/4108.pdf/eea41bda-f586-4c65-b350-1c909599a4f9. [Accessed: 15. 2. 2020.]
  7. Ke, W., Haitao. H., Cai, C., Zhengyou, H., Lihua, C. 2017. A simulation platform to assess comprehensive power quality issues in electrified railways. International Journal of Rail Transportation. Available from: https://doi.org/10.1080/23248378.2018.1424046. [Accessed: 2. 7. 2020.]
  8. Marek, J. 2015. Information from UNISIG, aktuální stav specifikací a další rozvoj ETCS. ACRI. Available from: http://www.acri.cz. [Accessed: 28. 2. 2020.]
  9. Marek, J. 2019. Brzdný model ERTMS/ETCS a možnosti jeho optimalizace na úrovni aplikace.
    Vědeckotechnický sborník ČD. Available from:  https://vts.cd.cz/documents/168518/233051/01_4719_Marek_Brzdny+model+ERTMS_ETCS+a+moznosti+jeho+optimalizace_kor.pdf/b12d3378-d3e6-4d06-8feb-b5ba5a15605c. [Accessed: 28. 1. 2020.]
  10. Nachtigall, P. 2016. Vliv nastavení mobilní části ETCS na brzdnou křivku. Perner's Contacts. 22. April, 131-138.
  11. Nachtigall, P., Ouředníček, J. 2018. Wider aspects of deceleration supervision in ERTMS/ETCS. Matec Web of Conferences. Available from: https://doi.org/10.1051/matecconf/201823500010.
    [Accessed: 17. 3. 2020.]
  12. Ouředníček, J., Nachtigall, P. 2019. Zajištění dohledu nad zastavením (snížením rychlosti) v
    ERTMS/ETCS v souvislostech. Vědeckotechnický sborník ČD. Available from:
    https://vts.cd.cz/documents/168518/233051/11_4719_Nachtigall%2C+Ou%C5%99edn%C3%AD%C4%8Dek_Zaji%C5%A1t%C4%9Bn%C3%AD+dohledu+nad+zastaven%C3%ADm+(sn%C3%AD%C5%BEen%C3%ADm+rychlosti)+v+ERTMSETCS+v+souvislostech_kor.pdf/bf57499e-aac1-4a0f-9ebdb523361d694a. [Accessed: 15. 1. 2020.]
  13. Raithel, M., Baumbusch, J., Kielbassa, S. 2016. Construction of the New High-Speed Railway Line Ulm–Wendlingen in Karstifed Rock. 2016. Procedia Engineering Volume 143, Pages 1144-1151. Available from: https://doi.org/10.1016/j.proeng.2016.06.139. [Accessed: 22. 4. 2020.]
  14. Siroky, J., Sramek, P., Magdechova, K., Tischer, E., Hlavsova, P. 2019. Timetable performance
    evaluation. Transport Means - Proceedings of the International Conference. Aviable from:
    https://www.scopus.com/record/display.uri?eid=2-s2.0-85074278851&origin=resultslist. [Accessed: 22. 4. 2020.]
  15. Sůra, Jan. 2020. Správa železnic otestovala 200 km/h na české železnici. Vyšší rychlost nechce za každou cenu. Z dopravy.cz. Aviable from:
    https://zdopravy.cz/sprava-zeleznic-otestovala200-km-h-na-ceske-zeleznici-vyssi-rychlostnechce-za-kazdou-cenu-40207//. [Accessed: 25. 1.2020.]
  16. Wang, J. 2018. Optimizing High-Speed Railroad Timetable with Passenger and Station Service
    Demands: A Case Study in the Wuhan-Guangzhou Corridor. Journal of Advanced Transportation. Available from: https://doi.org/10.1155/2018/4530787. [Accessed: 25. 4. 2020.]
  17. Wang, Y., Penq, Q. Y., Liu, L., Wang, J. 2020. Optimization of High-speed Railway Line Planning
    Considering Extra-Long Distance Transportation. Journal of Advanced Transportation. Aviable from: https://doi.org/10.1155/2020/3062891. [Accessed: 25. 4. 2020.]
  18. Zhang, H., Jia, L., Wang, L., Xu, X. 2019. Energy consumption optimization of train operation for
    railway systems: Algorithm development and realworld case study. Journal of Cleaner  Production. Available from: https://doi.org/10.1016/j.jclepro.2019.01.023. [Accessed: 15. 3. 2020.]
  19. Zhang, M., Zhu, X. 2018. Optimization study of jinghu highspeed railway train operation diagram. Journal of Physics: Conf. Series 1176 (2019) 052003. Available from:
    https://iopscience.iop.org/article/10.1088/1742-6596/1176/5/052003/pdf. [Accessed: 1. 7. 2020.]
  20. Zhengyong, H., Zheng, Z., Haitao, H. 2016. Power quality in high-speed railway systems. Aviable
    from: https://doi.org/10.1080/23248378.2016.1169228. [Accessed: 1. 7. 2020.]
  21. Żurkowski, A. 2018. Traction power consumption as a component of maximum. MATEC Web of
    Conferences 180. Available from: https://doi.org/10.1051/matecconf/201818001009. [Accessed: 22. 4. 2020.]