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Abstract 
Lean Manufacturing (LM) is known as an effective methodology utilized by manufacturing organizations to increase 
productivity, improve quality, and decrease costs. On the other hand, Industry 4.0 (I4.0) transforms a traditional factory into a 
smart one by integrating its machines and processes using advanced information technology and robust communication systems. 
Simulation and production optimization have proved to be an effective tool to analyze the dynamic nature of the processes and 
statistically justify modifications paybacks. Currently, there is no decision-making tool that integrates LM and I4.0 using hybrid 
simulation and production optimization models to benefit the manufacturing processes. For that reason, a framework integrating 
the LM and I4.0 is developed and implemented on a local window manufacturing plant using simulation and optimization tools 
to improve the overall productivity of their manufacturing process. The developed framework is able to investigate process 
improvements and optimize the outputs to identify the bottlenecks and resources utilization, provide a useful tool to test the 
effectiveness of any proposed process improvements, and identify non-value adding tasks and analyze time breakdown. The 
framework can be applied to any manufacturing company to not only identify and eliminate the waste but also to statistically 
forecast the resulting benefits before changes are implemented. 
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1. Introduction 

As one of Canada's most important economic sectors, 
the manufacturing industry accounts for 
approximately $174 billion of Canada’s gross domestic 
product (GDP), which is over 10% of Canada’s total GDP 
(Government of Canada, 2019). Given the spread of 
globalization and the low trade barriers, the 
manufacturing industry is currently facing growing 
opportunities as well as tremendous competition. The 
unprecedented requirements for product 
customization have increased the volatility of the 

manufacturing sector (Mourtzis et al., 2014). The 
manufacturing sector is being challenged to cope with 
the rate of producing innovative products within 
shorter timeframes. There are new innovative 
technologies, theories, and idea coming out every 
single day, and manufacturers are striving to realize 
the benefits to their businesses and generate more 
value. In the following, an overview of literature on the 
application of decision-making tools in integrated LM 
and I4.0 systems using hybrid simulation and 
optimization models will be presented. After the 
literature review, a methodology for applying the 
developed decision-making tool in a manufacturing 
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environment will be proposed, followed by the 
application of the methodology to a case study where a 
time study was conducted, then LM is employed to 
identify the opportunities to improve productivity. 
After that, simulation and optimization models were 
utilized to predict the after-effects of changes 
proposed by the lean analysis to provide managers with 
more confidence in adopting the changes, identify the 
bottlenecks and areas of under- or over-utilization of 
resources, optimize the resource allocation process and 
line balancing, and identify non-value adding tasks 
and quantify direct labour.  

2. Literature Review 

2.1. Lean Manufacturing (LM) 

The concept of lean manufacturing was originated by 
Toyota in Japan after the Second World War, at the time 
when Japanese manufacturers were challenged from a 
shortage of resources and financial support. To 
overcome this, corporate leaders in Japan put their 
efforts into developing and refining the manufacturing 
process to reduce waste and non-value-added 
activities (Elbert, 2013). The system focuses on 
identifying the waste and use tools such as just-in-
time (JIT), Kanbans, and setup time reduction to reduce 
or eliminate the wastes (Abdulmalek and Rajgopal, 
2007). Through years of application, lean 
manufacturing has been proven to benefit the 
manufacturing industry. Manufacturers report 
improvement in productivity, net income, labour 
utilization rate, machine utilization rate, and return on 
investment, as well as decreases in the cycle time and 
cost (Pavnaskar, 2003). Although the core 
methodologies of lean are simple, a tool that can 
predict the gains are of a significant magnitude to 
justify the cost of changes would benefit the 
implementation of lean. In manufacturing companies, 
the cost of reallocating resources, purchasing new 
machinery, modifying manufacturing processes etc. 
are usually high. Lacking justification for future 
paybacks, the managers are usually reluctant to put 
lean analysis into practice. In general, one tool that can 
quantify and visualize the gains in the early planning 
stage is simulation. The statistical analysis from 
simulation tools can enable managers to compare the 
potential future performance based on the 
implementation of the lean analysis to the existing 
system (Detty and Yingling, 2000). 

2.2. Industry 4.0 (I4.0) 

The complexity of today’s products stems from the 
fact that they involve a multitude of sub-systems, 
multiple engineering domains, and several variants 
and system architectures. It is also the result of the fact 
that these products consist of sub-systems that 
interact and need to be integrated. Moreover, 
technological convergences in various applications of 
engineering domains are happening at an 
unprecedented rate and magnitude. Such complexity of 

products coupled with global competitiveness among 
companies demands streamlined product development 
approaches to be implemented that can utilize the 
complete potential of cutting-edge technologies in 
design and manufacturing (Ahmad et al., 2017). The so-
called Industry 4.0 or the Fourth Industrial Revolution 
necessitates a change of perspective in developing 
products that are cyber-physical systems and demand 
a fundamental shift in the way products are designed 
and manufactured, respectively. Digital manufacturing 
has been proposed to address the challenges faced 
when developing modern products. Both production 
paradigms, i.e. LM & I4.0, are promising to solve future 
challenges in manufacturing (Goienetxea Uriarte, 
2018). Hence, the question arises if and how these 
developments can possibly support each other.  
According to Dombrowski et al. (2017), LM is 
considered as either a prerequisite for introducing I4.0 
tools or I4.0 tools are regarded as promoters of LM but 
the combination of both yields in positive synergies.  
Figure 1 gives an overview of literature which supports 
LM and I4.0 general compatibility, perceptions, and 
correlations where the employee is the center of this 
attributed similarities and can manage both paradigms 
in a decentral way. 

 
Figure 1. Different perspectives between LM and I4.0 

2.3. Decision-Making Tools 

The decision-making tools are an interactive 
computer-based platform that can be used to aid in 
complex decision-making by employing data 
management, communication technologies, and 
modelling capabilities. The decision-making process 
involves three interconnected components: the 
decision makers, central storage database, and the 
decision support system. The three components 
interact to support planning and operational control 
decisions for manufacturing processes as illustrated in 
Figure 2. 
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Figure 2. Decision support system process 

2.4. Simulation and Optimization 

Manufacturing simulation focuses on modeling the 
behavior of manufacturing organizations, processes 
and systems. Traditionally, simulation tools have been 
used in production system planning and design. Once 
the system has been implemented, the model looses its 
value and is set aside until other strategic decisions are 
made. Today, simulation models are used in all the 
different system levels and phases of the 
manufacturing system life cycle (Heilala and Voho, 
2001). Naturally there is wide variety of simulation 
tools in the manufacturing domain. The use of discrete 
event simulation (DES) can be enhanced also to cover 
production operations planning as a decision support 
tool (Thompson, 1993). While some DES models are 
used to plan and design, other models are used in the 
day-to-day operational production planning of 
manufacturing facilities.   According to Goienetxea 
Uriarte (2020), these "as built" models provide 
manufacturers with the ability to evaluate the capacity 
of the system for new orders, unforeseen events such as 
equipment downtime, and changes in operations. 
Having built a simulation model, experiments are then 
performed by changing the input parameters and 
predicting the response. Before taking a new order 
from a customer, a simulation model can show when 
the order will be completed and how taking the new 
order will affect other orders in the facility. Simulation 
can be used to augment the tasks of planners and 
schedulers to run the production more efficiently. It is 
important to recognize that simulation is primarily a 
decision support tool and does not directly seek optimal 
solutions. The decision is based on the data and 
information available at the time. There is a need for a 

quick response tool to evaluate alternatives and 
scenarios before decisions are made. Optimization and 
simulation modeling could be used to provide 
information for decision makers as illustrated in Figure 
3. 

 
Figure 3. Simulation-based optimization to support decision-
making 

2.5. Comparison Matrix Between Current and 
Proposed Tools 

As a result of an extensive review of existing literature 
and reasonable assessments of the authors, Table 1 
depicts a matrix to illustrate which I4.0 tools can be 
utilized to support the analysed lean methods. The I4.0 
tools are selected based on reviewing academic 
publications. Subsequently, the synergy potentials are 
briefly outlined in a condensed way showing seventeen 
I4.0 tools that can support twelve different lean 
methods in comparison with the developed decision-
making tool. The findings reveal that applying the 
developed tool can assist in realizing the prosecution of 
most lean targets. 

3. Methodology  

To achieve the research objectives, this research will 
follow the methodology shown in Figure 4. A time study 
will be performed on a window production line. For 
every single operation, multiple time data are collected 
that are raw data in a systematic method. Also, in this 
stage, a process study is performed, in which 
operational sequence and resource layout are studied. 
The order information and actual productivity are also 
recorded. Using lean manufacturing techniques, waste 
in the production process is identified. This research 
includes the analysis of existing non-value-added 
procedures and corresponding solutions are proposed. 
Before implementing changes, future analysis in 
simulation is required to verify and validate the 
decision-maker approach. Simulation models of the 
window production line is built based on data from the 
time and process study. The models are validated using 
actual production numbers and current resource 
allocation. After implementing changes, simulation is 
used to identify the bottleneck in the production 
process and generate the best resource allocation 
scenario based on the developed optimization 
algorithm considering the non-value added activities 
and time breakdown results effect on productivity. 
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Table 1. Comparison matrix between current and proposed tools 

I4.0 Tools 
LM Methods 

JIT 
Line 
Balancing 

Continuous 
Flow 

Heijunka Kanban VSM TPM SMED 5S Andon Pokayoke Jidoka References 

Additive 
Manufacturing 

X      X X     Mohamed et al. 
(2016) 

Virtual 
Representation       X X    X 

Tokola, Niemi and 
Vaisto (2016) 

Digital 
twin/Simulation 

X X  X X X X X X    Rane et al. (2015) 

Cloud Computing X     X X    X X Gurumurthy and 
Kidali (2011) 

Internet of Things             
Chu and Shih 
(2015) 

RFID technologies X    X X X X X  X  Wang et al. (2016) 

Smart Sensors X    X        
Ketteler and Kӧnig 
(2017)  

Big Data X X X X X X X    X  Kӧther (2017) 
Machine Learning      X X X     Künzel (2016) 
Artificial 
Intelligence 

     X X X     Staufen (2016) 

Automation X  X  X       X Metternich et al. 
(2017) 

Predictive 
Maintenance       X    X  

Wagner et al. 
(2017) 

Advanced Robotics X  X  X X   X X   
Pokorni et al. 
(2017) 

Machine to 
Machine 

  X X X    X X  X Kolberg and 
Zühlke (2015) 

Simulator X X X   X X X   X  Huber (2016) 
Optimizor X X   X X       Spath et al. (2013) 
Decision-Making 
Tool X X X X X X X X X X X X 

Mrugalska and 
Wyrwicka (2017) 

 

 
Figure 4. Based optimization to support decision-making 

4. Case Study 

In this case study, the DES is utilized to model the 
window manufacturing processes because it best 
reflects the actual production in which materials only 
transform after passing a workstation. Simphony, a 
simulation software, is used as modelling tool which 
was developed by the University of Alberta (AbouRizk et 
al., 2016). The first step in developing the simulation 
model is to abstract and identify problems of the 
physical system, which is designed to test out the 
impact of changes proposed by the lean analysis and 
improve the process design of window production lines 
to reach higher productivity. The main production line 
process flow diagram (PFD) is constructed as and 
selected to be the problem domain as represented in 
Figure 5.  

The assumptions, inputs, and specifications are 
defined in the conceptual model stage. Followed by 
which, the draft computer simulation model is built 
using the information gained from the time study, the 
process study, and the resource allocation study as 
illustrated in Figure 6. According to the operational 
sequence listed in Figure 5, a simulation model was 
designed where the window production testing data 
was connected to a database that contains all orders 
information. Due to the mass personalization and 
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customization, it was hard to find two identical 
windows produced in the same shift. There were many 
variations in each operation, which brought fluctuation 
to the operation time and thus multiple simulation 
specific attributes. In the validation stage, the 
validation technique used is historical data validation. 
The production system of the manufacturing company 
tracks the order information of windows, the number 
of workers on the line, and the number of windows 
produced each shift. The order information of the 
windows for three production days (February 04, 05, 
and 06, 2020) are selected to be the input of entities in 
the model. The simulation time is set to be 15 hours, 
which represents two shifts per day. At the end of the 
simulation time, the counter element is used to track 
the total number of sealed units produced. A key 
performance indicator (KPI), the productivity, is 
calculated within the model using Equation 3 after 
computing the production rate and production ability 
using Equations 1 and 2 respectively. The simulated 
productivity is compared to the actual productivity to 
check if the simulation model is close to reality and 
thus reflect model accuracy. 

 

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒

=  
𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 (ℎ)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑊𝑜𝑟𝑘𝑒𝑟𝑠 ∗ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑊𝑖𝑛𝑑𝑜𝑤𝑠 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑
 

(1) 

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝐴𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒
∗ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑊𝑜𝑟𝑘𝑒𝑟𝑠 ∗ 7.5ℎ𝑟𝑠 

(2) 

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝑆. 𝑈 ℎ𝑟𝑠⁄ ) = 𝑇𝑃𝑆.𝑈 𝑇𝐿𝐻𝑟𝑠⁄  (3) 

 

Where, 

S.U= Sealed Units 

Hrs= Hours 

TPS.U= Total number of sealed units produced 

TLHrs.= Total labor hours required 

 

 

 
Figure 5. Window processes simulation model 

 

Figure 6. Window process flow diagram 

In a balanced production line, the cycle time of all 
workstations should be close. In today’s manufacturing 
sector, the unprecedented increase in requirements for 

product customization and personalization have 
increased the level of difficulty encountered when 
balancing production as product variances cause 
fluctuations in the cycle time of each station, which has 

1 
2 

1 

2 
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in turn brought about difficulties in calculating line 
balancing using lean manufacturing exclusively. Based 
on the validated original model and the bottleneck 
deduced previously, welding, cleaning and brick 
modeling stations were identified as the bottlenecks on 
the production line. The company cannot afford the 
acquisition of new machines because of limited budget 
and available footprint. Since the company was more 
focused on improving productivity and was less 
concerned about the number of units produced per day, 
the best strategy to balance the line was to remove 
workers from the workstations where the worker 
utilization rates were low. An algorithm was designed 
to drop one worker from the workstation where the 
worker utilization rate was the lowest, after which, the 
new productivity was compared to the last scenario. If 
the productivity increases, the utilization rates of all 
resources are calculated again, and another worker 
would be dropped in the workstation with the lowest 
utilization rate. This loop is repeated until dropping a 
worker did not benefit productivity. Time study was 
carried out to determine the non-value-added time. 
There are many instances that workers would be 
performing their job without adding any value to the 
final product. Non-value-added times are 
characterized into various categories such as 
transportation, inventory, motion, waiting, over-
production, over-processing and defect. I4.0 is utilized 
to develop the future simulation model to measure the 
effects of adopting lean manufacturing changes and to 
optimize the resource allocation. To achieve the above, 
it is important to perform the time break down analysis 
on various operations in the production line. In a 
typical production day, the productive hours are 
divided into internal and external hours. Internal hours 
are fully utilized to the production (value-added time) 
whereas external hours include waiting time, 
transportation time and non-utilized talent (non-
value-added time). External time calculation is two 
stage process. In first stage, average percentage of 
external activities performed in a day are determined. 
In second stage, external time factors such as waiting 
time factor, transportation time factor and Non-

utilized talent time factor are calculated. Based on 
operations, time calculation for window production is 
summarized in equations 3 to 11 as follows: 

 

Window Operation #1  

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑡𝑖𝑚𝑒 = 𝑥1  

𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 = 𝑥1 ∗ 𝑦1  

𝑇𝑜𝑡𝑎𝑙 = 𝑥1 ∗ (1 + 𝑦1) (4) 

Window Operation #2  

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑡𝑖𝑚𝑒 = 𝑥2  

𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 = 𝑥2 ∗ 𝑦2  

𝑇𝑜𝑡𝑎𝑙 = 𝑥2 ∗ (1 + 𝑦2) (5) 

Window Operation #n  

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑡𝑖𝑚𝑒 = 𝑥𝑛  

𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 = 𝑥𝑛 ∗ 𝑦𝑛  

𝑇𝑜𝑡𝑎𝑙 = 𝑥𝑛 ∗ (1 + 𝑦𝑛) (6) 

𝑆𝑢𝑏𝑇𝑜𝑡𝑎𝑙 = 𝑥1 ∗ (1 + 𝑦1) + 𝑥2 ∗ (1 + 𝑦2) + ⋯ + 𝑥𝑛

∗ (1 + 𝑦𝑛) = ∑ 𝑥𝑘 ∗ (1 + 𝑦𝑘)
𝑛

𝑘=1
 

(7) 

𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 = ∑ 𝑥𝑘 ∗ (1 + 𝑦𝑘)
𝑛

𝑘=1
∗ 𝑧1% (8) 

𝑁𝑜𝑛 − 𝑈𝑡𝑖𝑙𝑖𝑧𝑒𝑑 𝑇𝑖𝑚𝑒 = ∑ 𝑥𝑘 ∗ (1 + 𝑦𝑘)
𝑛

𝑘=1
∗ 𝑧2% (9) 

𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝐹𝑎𝑐𝑡𝑜𝑟, 𝑒𝑡𝑐. = ∑ 𝑥𝑘 ∗ (1 + 𝑦𝑘)
𝑛

𝑘=1
∗ 𝑧3% (10) 

𝑇𝑜𝑡𝑎𝑙 = ∑ 𝑥𝑘 ∗ (1 + 𝑦𝑘)
𝑛

𝑘=1
∗ (1 + 𝑧1 + 𝑧2 + 𝑧3) (11) 

 

 

Table 2. Worker reallocation iterations 

Scenarios 
WS1 WS2 WS3 WS4 WS5 WS6 WS7 WS8 WS9 WS10 

# of 
Workers 

Productivity 
(SU/Hour) Cutting Welding Cleaning 

S. 
Hardware 

F. 
Hardware 

W. 
Hardware 

Brick 
Molding 

Glazing QA/QC Wrapping 

Original 2 2 2 1 1 1 4 3 1 1 17 0.96 
No. 1 2 2 1 1 1 1 4 3 1 1 16 0.99 
No. 2 2 2 1 1 1 1 4 2 1 1 15 1.01 
No. 3 2 2 1 1 1 1 3 2 1 1 14 1.02 
No. 4 2 1 1 1 1 1 3 2 1 1 13 1.03 
No. 5 2 1 1 1 1 1 3 2 0 1 12 1.08 
No. 6 2 1 1 1 1 1 2 2 0 1 11 1.05 
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5. Results and Discussions 

The simulation model is developed for the window 
production for various processes including cutting, 
welding, corner cleaning, hardware assembling, brick 
molding, glazing, QA/QC and wrapping. Workers are 
allocated on these workstations as per original data 
collected: 2 cutting, 2 welding; 2 corner cleaning, 3 
hardware assembling, 4 brick molding, 3 glazing, 1 
QA/QC and 1 wrapping. This gives the total worker 
count to be 17 with calculated hourly productivity 
(SU/Hour) to be 0.96. The workstation with lowest 
utilization identified was cleaning and after removing 
one worker, its productivity increased to 0.99. After 
series of this iteration on other workstations having 
lowest utilization rate, it was found that total number 
of workers required dropped from 17 to 12 (29% drop) 
and highest productivity of 1.08 SU/hour was achieved. 
This process is summarized in Table 2. It was found 
that time consumed by most non-value-added activity 
was waiting time with 17.15 hours representing 8% of 
the total external time. Results for internal and external 
times are summarized in Table 3.  

Table 3. Time breakdown results 

 Time Breakdown 

 Hours Percentage 

Internal Time 194.08 89.2 

External Time 
Waiting Time 17.15 7.9 

Transportation Time 5.835 2.7 
Non-Utilized Talent 0.435 0.2 

 Total 23.42 10.8 
Total Time 217.5 100 

 

After examining and fixing all the logical errors, 
syntax errors, data errors, experimental errors, bugs 
within the model, to validate the accuracy of the model, 
a comparison between actual productivity and 
simulated productivity was performed. The The model 
that was built, verified, and validated using actual 
production data was utilized in statistically analyzing 
the influence of changes on productivity before actual 
implementation. The scanned finished order 
information was translated into attributes and was 
tabulated into a database as the input for model 
validation. The resources layout was set up based on the 
employee attendance record on the test days. The test 
results were given in Table 4. It was noted that the 
difference in each shift was less than 10%, and the 
difference between simulated overall productivity and 
actual productivity on the three days was less than 5%. 
The difference was minor; thus, the simulation model 
was considered as having passed validation. The main 
contribution of this research was the development of a 
framework that integrates the LM and I4.0 and 
implementing it on a local window manufacturing 
plant using simulation and optimization tools that 
results in improving the overall productivity of their 
manufacturing process by identifying the bottlenecks, 
non-value adding tasks, analyzing time breakdown, 
and resources utilization. Also, in this research a 
general template was provided to break down the 
window manufacturing process, collect operation time, 
and determine the resource layout. The template can be 
used in similar industries. 

 

Table 4. Accuracy comparison between actual and simulated productivity 

Date Shift Employee Number 
Units Produced Productivity (Sealed Unit/Labour Hour) 

Difference 
Actual Simulated Actual Simulated 

Feb 04, 2020 
A Shift 16 165 169 1.38 1.41 3% 
B Shift 17 192 188 1.51 1.47 -3% 
Overall 33 357 357 1.44 1.44 0% 

Feb 05, 2020 
A Shift 15 180 170 1.60 1.51 -9% 
B Shift 16 202 202 1.68 1.68 0% 
Overall 31 382 372 1.64 1.60 -4% 

Feb 06, 2020 
A Shift 17 173 173 1.36 1.36 0% 
B Shift 17 199 203 1.56 1.59 3% 
Overall 34 372 376 1.46 1.47 2% 

 
 

6. Conclusions  

Using the developed decision-making tool not only we 
identify the waste and find ways to eliminate the waste, 
but we could also perform the detailed analysis and 
simulate the results before actual implementation. 
Simulation models were developed to mimic the 
dynamic changes in cycle times and by using the 
developed algorithm. The best resource allocation 
scenario can be then determined to balance and 
increase the productivity. As demonstrated, the 

developed decision tool shows its effectiveness and 
robustness where it can be implemented to serve as a 
generative decision system that proactively aids the 
designer in the decision-making process. The study 
limitations are the input data for the simulation model, 
which is limited to three production days, sequencing 
of orders can influence the productivity, and the 
operation time was fixed numbers. Future work will 
include the development of an algorithm that can 
dynamically perform line balancing using the 
simulation model by changing different factors 
concurrently and by implementing the linear line 
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balancing method. Also, by developing a guideline on 
how to judge the accuracy of simulation models to 
standardize their verification & validation process. 
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