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Abstract
The classification methods Histogram of Oriented Gradients, Bag of Features, Support Vector Machines and Neural Networks
are evaluated to find a fitting solution for the automatic classification of building plan components. These components
feature shapes with little features and minor differences. After processing the building plans for the classification, feature
analysis methods, as well as machine learning based approaches, are tested. The results of the classification methods are
compared and the behaviors of the classification methods are analyzed. First results have shown, that neural network
classification using line data extracted via Hough transformation and additional calculations surpass other classification
methods tested in this work. It was found that the basic structure of building plan components can be detected with neural
networks, but further improvements have to be made, if only a single classification process is to be relied on. In the future
this work will be used to create 3D building models from 2D plans and enable agent based simulation in the models.
Keywords: Classification; Modeling & Simulation; machine learning; feature analysis; building plan

1. Introduction

Building plans contain different components, whichdefine how rooms are set up and connected to forman apartment, house or building complex. These com-ponents clearly differentiate the different parts in thebuilding and are defined by a set of standards. However,different standards exists depending on state or evencounty legislature. The components can be combinedin a multitude of ways on the building plan, and ar-chitects may draw the building plans by hand, leadingto minor differences for the same components. Thesedifferences regarding standards and drawings are noproblem for human observers, but lead to problems forcomputers utilizing detection methods.
Currently, the modeling process for buildings is done

by the architect or a specialized designer, usually onlyfor bigger projects or for specific requests, as the mod-elling process is too costly for small scale or olderprojects (Wonka et al., 2003). An automated analy-sis of building plans would make the modeling processquicker and more affordable. The 3D-models can beused for different calculations and simulations, for ex-ample automatically calculating the shortest escaperoute or verifying the accessibility of the building. Ad-ditional analyses, can improve the design process ofnew building plans, as well as enabling the use of sim-ulations for existing building plans.
Classification methods can solve this problem anddetect the different components of the building plancorrectly. A multitude of different classification meth-ods exist, and it’s difficult to predict, which methods
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Figure 1. Image-based classification preprocessing - Building plansare split into squares. Each square is then independently classified.

are suitable for the given use case. Additionally, prepro-cessing of the building plans has to be done dependingon the classification. Some classification methods workwith images from the building plan, while others re-quire additional information calculated based on thebuilding plans (Lu and Weng, 2007).

2. Methods

Classification methods analyze objects and categorizethem according to different criteria. Some classifiersare able to calculate values for the criteria themselves,while other classification methods require a set infor-mation and adapt fitting parameter sets during a train-ing phase. Classification methods, like histogram oforiented gradients (HOG) and bag of features (BOF),are able to classify images without requiring specificpreprocessing or calculations (Nowak et al., 2006; Dalaland Triggs, 2005). Classifications using machine learn-ing methods on the other hand are not immediatelyable to classify images, but require a transformation ofthe image data into a set of values.
In this work, the image classification algorithms aretested using cropped parts of the building plan. Testsare done with squared image parts, as well as extractedlines with a padding. For the machine learning clas-sifications, the lines composing the building plan areextracted and information about them is calculated,like length, angle and number of neighboring lines.The calculated values can then be used to train theclassifiers, thus allowing to classify new lines, and infurther consequence entire components of the buildingplan.

2.1. Preprocessing for Image-Based Classification

Preprocessing of the building plans is required to pre-pare the images for the classification. To improve thecomponent detection, the building plan is binarized.The building plan is first transformed to grayscale, af-

Figure 2. Five different components (walls - black, doors - green, win-
dows -blue, stairs -red and unknown -grey) were classified manually.

ter which a threshold was chosen for binarization usinga histogram (Sauvola and Pietikäinen, 2000). This pro-cess removes noise in the background, which couldotherwise be wrongly classified as a component.
The image based classification methods requirelarger images than the machine learning based classi-fication to identify features from. Building plans aresplit into same sized parts, which are then evaluated.An example for splitting the building plan like this canbe seen in Figure 1. Squares the size of 50x50, 75x75and 100x100 pixels are tested and evaluated. Theseparts are manually classified, before the classifiers aretrained. Additionally, a second method is tested. In-stead of splitting the building plan into squares, thebuilding plan will be fragmented into its lines, includ-ing a padding for each line. Regarding the padding,tests will be done with padding sized 50, 75 and 100pixels.

2.2. Histogram of Oriented Gradients

In this classification process, the shape of an image isdescribed by calculating a histogram of gradient direc-tions for smaller regions of the image. These regionsare called cells. Histogram of gradient directions arecalculated for each cell (Dalal and Triggs, 2005). Dueto the usage of cells, geometric transformations don’tinfluence the classification process, with the exceptionof rotation. By comparing the histograms of the dif-ferent cells, it is possible to classify the images (Luoet al., 2015). Histogram of oriented gradients is testedusing cropped, equally sized parts of the building plan.Different image sizes will be tested to verify, whichsizes lead to the better results. The cell sizes 4x4, 8x8and 16x16 will be tested. A test phase with images ofthe extracted lines is done as well and compared to theprevious results.
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2.3. Bag of Features

This classification method calculates a number of dif-ferent features, which are then quantized, to find howcertain features define specific classes (Csurka et al.,2004). Often calculated features are textures, and otherrepeating patterns in the image. New images can thenbe classified by calculating clusters for the differentfeatures (Fei-Fei and Perona, 2005). Similarly to thetest phase with histogram of oriented gradients, bag offeatures classification is tested with cropped images, aswell as extracted lines with padding. The same paddingsizes (50, 75 and 100 pixels) will be tested.
2.4. Preprocessing for Machine Learning Classifica-

tion

Background noise is removed via binarization. Af-ter this process, the lines of the building plan canbe extracted. Hough transformation has been imple-mented for tracking the start- and end-position oflines (Hough, 1962). The different lines composingthe building plan can be extracted and are classifiedby coloring them. This coloring and classification pro-cess is done manually, and is required for the trainingphases of classifiers. Figure 2 depicts such a manuallyclassified building plan. Using this information, theclassifiers can deduce which features describe a specificclass.
The machine learning classification methods requirea transformation from the image data to set of values.For this, the lines calculated in the previous steps areused. For each line a set of properties is calculated,like length, angle and number of neighboring lines. Tofurther improve the classification, more properties arebeneficial (Bishop, 1995). This is solved by adding theproperties of the closest neighboring lines to the cur-rent line, doubling the number of properties for a singleline. A single line then contains enough properties fora stable classification.

2.5. Support Vector Machines

Support vector machines classify objects with vectorspace calculations. During the training phase, the ob-jects are placed in a vector space. A line is calculated,which is able to separate the objects by class (Cortes andVapnik, 1995). If the line separates the different objectswith a large margin classification improves. Withoutseparation, the vector space is transformed in a higherdimensional space and the line calculation is repeated(Jin and Wang, 2012).
This classification method does not work directlywith images, but requires a set of values. The propertiesof the line data will be incorporated for the trainingand test phase of the support vector machine classifier.Different classifier settings are evaluated, like differentbinary learners and boosting algorithms (Hsu and Lin,2002).

2.6. Neural Networks

This method creates a network of nodes, which areconnected to each other via edges. Each edge has aweight assigned, defining how calculations are propa-gated through the network (Kolen and Kremer, 2001).During the training of the neural network, edges andweights are adjusted, until the network is able to clas-sify the given value sets accurately (Ojha et al., 2017).The neural network approach is evaluated using thevalue sets containing properties of all lines. Neuralnetworks with 50, 75, 100, 500, 1000 and 1500 neuronsand a depth of 1, 2, 5 and 10 are evaluated.

3. Results

Confusion matrices show the results over 15 plans from7 different architects for the tested classification meth-ods.

Figure 3. Success rates for the HOG Feature Selection using cropped squares. Numbers shown bold and underlined define which class has beencorrectly classified the most often for a specific class.
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Figure 4. HOG using padded lines are similar to those of cropped squares, with the exception of 50x50 padded lines and a cell size 8x8, whichlead to 7.3% better results.

3.1. Histogram of Oriented Gradients (HOG)

This classification method was tested in two test phasesusing different image data. The first test phase wasrun with evenly cropped squares of building plans. Anaverage classification rate of 58.87% is reached, with
unknown and wall classes being correctly classified themost consistently. The cell size of 8x8 lead to the bestresults in this test phase, except for the squares sized50x50, where better results could be achieved with acell size of 4x4. The results of the best runs for thedifferent square sizes can be seen in Figure 3.

The classifier strongly preferred components of theclass unknown. This could be, because this class is themost prevalent in building plans (see the grey linesin Figure 2). The shape of images class unknown alsostrongly varies, while the shapes of other classes differless. This could lead to unknown being chosen moreoften.
Similar results have been observed for the test phaseusing extracted lines with additional padding. The av-erage classification rate was 60.53% and the cell sizeof 8x8 lead to better results than 4x4 and 16x16. Thebest result with 65.40% was achieved with a paddingsize of 50x50 and a cell size of 4, which can be seen inFigure 4. Classifying the extracted line images lead tosimilar problems as using the cropped square images.Components of the class unknown are strongly pre-ferred, which might be thanks to their diverse shapes,as well as their prevalence in the test data. Splittingthis class up into other classes could fix this issue,as more shapes would then be distributed over moreclasses, instead of the unknown class.

3.2. Bag of Features

Bag of features performed the worst compared to theother classification methods in this work. The calcula-tion of the required features was not possible during theclassifier training. Without any informative features,

the classification process cannot be done successfully,thus rendering any following tests with the classifierfutile. This behavior was noticed during the test phase,as every object was classified as unknown, which wasthe most common class type during the test phase. Thisbehavior was observed for both the cropped squares, aswell as the extracted lines, of the building plans. Thesize of the squares and padding of the lines didn’t leadto any changes regarding this result.
The reason for the failure of this classificationmethod could be, that features are mainly created byanalyzing textures. If no textures are available, or thegiven textures are not diverse enough, then the classi-fication process is worsened (Lazebnik et al., 2006).

3.3. Support Vector Machines

The classification results of support vector machinesare decent for some of the components, but fail to clas-sify the other components. Unkown and wall compo-nents have been classified correctly more consistentlythan the other classes, which can be seen in Figure 5.Wrong classification as class type unkown was espe-cially prevalent. The best results with support vectormachines have been achieved via a "One Vs One" bi-nary learner and the boosting algorithm "Gentle Boost",which, on average, correctly classified 1.38% more ob-jects than the run with "One Vs All" and 4.62% moreobjects than run with "Ada Boost M1" (Friedman et al.,2000).
All three support vector machine settings resulted inheavily preferring unkown to the other classes. A reasonfor this could be, that the information describing theclass unkown is so diverse, that the clustering methodscouldn’t split the different classes well enough. Theresults could be improved by splitting the class unkownup in additional classes. More distinct clusters mightthen be found, which will also improve the classifica-tion of the previous components.
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Figure 5. With Support Vector Machines lines of the class unknown have been correctly classified most often, but other classes have also beenwrongly classified as this class most of the time

3.4. Neural Networks

Neural networks have been found to lead to the bestresults (72.82%) of all presented classification methodsin this work (see Figure 6). Components of the class
unkown, wall and window are correctly classified at least74% of the time, while door and stair components arerecognized 63% to 75% of the time. This classification,is able to classify the other components as well. Becauseof this, the detection of unkown is worse compared tothe other classification methods in this work (9.69%worse than support vector machines and 14.02% to17.35% worse than histogram of oriented gradients,depending on the method).

The classification rate for wall components is a17.55% better than the classification rate of support vec-tor machine, but 0.35% to 2.02% worse than the resultsachieved using histogram of oriented gradients. Win-
dow, door and stair components are significantly better

classified by the neural network approach, leading to17.14%, up to 54.03%, better classification results.
Different neural network sizes have been evaluated,ranging from 50 to 1500 neurons. Good results havebeen achieved starting with a size of 75. Bigger neu-ral networks improved the results slightly, but didn’tlead to any significant improvements (Lawrence et al.,1996).
Different amounts of hidden layers have been evalu-ated as well, with the best results being achieved using2 hidden layers with 100 neurons each. Neural networkswith 5 hidden layers and between 50 and 100 neuronslead to good results as well. Adding more hidden layersto the network worsened the results significantly, asthe classifier tried to focus on mainly the unkown and

wall classes, ignoring components of other classes. Thisbehavior seems contradictory, as more hidden layerswith more neurons would allow more complex calcu-lations, thus should be able to incorporate all compo-

Figure 6. In Neural Networks, different sizes of networks only lead to minor differences, but a minimum size is required to allow more complexclassification calculations.
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Figure 7. Result of the neural network classification of one buildingplan, showing that the core elements are classified correctly.

nents in the classification process. However, this couldbe because of overfitting and overtraining, as biggernetworks are able to specialize on the different valuesof the unkown and wall classes (Lawrence et al., 1996).Overfitting may occur to smaller scaled neural networksas well, but the amount of data given for the buildingplan component analysis is too large, leading to a moreshallow classification, which proves beneficial whenclassifying a dataset with unevenly distributed classes.Additionally, smaller networks can make use of differ-ent methods to further prevent overfitting, which arenot available to large networks (Hinton and Salakhut-dinov, 2006).

Figure 7 shows a building plan classified using aneural network. The basic structure of the buildingwas correctly classified. Not everything was classi-fied correctly, especially components of the class door(green color in Figure 7) could only be classified par-tially. Other times similar classes have been mistakenwith each other, like stair and wall components. Thiscould either be fixed by further improving the neuralnetwork classification, or implementing additional al-gorithms for fixing possible mistakes made during theclassification. One possible solution would be througha rule set, defining which line and component combi-nations are possible. Wrong classifications, like a wallpassing through a stair or a window missing a support-ing wall, could be recognized and reevaluated. Anotheroption would be to combine the neural network withother classification methods, or additional neural net-works, to create ensembles. Classifiers could be found,which are able to classify specific components moreprecisely, which could then be combined into an ensem-ble to improve the overall classification performanceover multiple classes (Opitz and Shavlik, 1996).

4. Conclusion

Out of four different classification methods, only onewas able to consistently classify all different buildingplan components. Most methods are able to correctlyclassify at least two components, but are not able toconsistently classify the remaining ones. Bag of fea-tures was not able to calculate the necessary features,rendering the following classification process moot.Histogram of oriented gradients and support vectormachine prefer one or two specific classes and are notable to differentiate the other classes well enough. Neu-ral network classification is able to differentiate thoseminor differences and allows a consistent classificationof building plan components.
Neural network classification is able to correctly clas-sify a majority of the lines and at least a few lines foreach component. The basic structure of the buildingis correctly classified, which would allow for an au-tomatic transformation into a 3D-model, as well asfurther calculations, like escape route and thermal cal-culations. Improving the neural network methods viaadditional algorithms or ensembles could further im-prove the classification, allowing the detection of moreintricate building plan structures.

5. Outlook

To improve the work tests will be done with neuralnetwork classification. Different settings will be eval-uated and additional classes will be added, as well asnew parameters to classify. Ensembles of neural net-works will be evaluated as well to determine, if onelarge network, or several smaller specialized networks,lead to better classification results for building plancomponents. Different methods will be evaluated toprevent overfitting and overtraining in larger networks,like dropout or prevention of co-adaption (Srivastavaet al., 2014; Hinton et al., 2012). Additional buildingplan data will be incorporated into a next test phase aswell, to improve the classifier training and provide newcomponent information. Especially building plans ofartistic or historic buildings containing unusual struc-tures will be evaluated, to determine the limit of theneural network classification. The goal of this work isto use the classification to create a building model outof the 2D plan and translate it into a 3D model to allowdifferent evaluations, such as escape route planning orsimulation of evacuations. Next steps will also involverule sets to combine the correctly detected lines intobuilding plan components.
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