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Abstract
This work deals with methods to improve efficiency of train networks and applies them on the example of Austrian freight
train traffic. The aim is to analyze the utilization of the capacity of the tracks and, if possible, to optimize them. We use
implementations of the Max-Plus automaton and apply them for given freight train traffic data of a small rail network
within Vienna, the capital city of Austria. The theoretical background is the Max-Plus algebra, with which the Max-Plus
automaton is described. This model deals in general with microscopic networks. In this paper the Max-Plus automaton is
applied to a schedule of freight trains, which run in the southwest of Vienna. It shows, that the efficiency of the utilization of
the tracks can be increased, if the sequence of the trains is changed.
Keywords: Max-Plus algebra, transport optimization, freight transport, train simulation

1. Introduction

In the past decades, train traffic in passenger andfreight transport has increased enormously around theworld. From 1998 to 2018 train traffic in Austria hasincreased from 179 to 310 million passengers per year(UNECE, 2020). Similiar, with austrian freight traffic,the total mass of transported goods has increased from73 to 105 million tons (UNECE, 2020). In order to han-dle the increasing demand, new possibilities have to beinvented.
This can be achieved by building new tracks, ex-panding the existing ones, or simply making better useof them. The latter is obviously the best economicaloption. In order to increase the efficiency, the capacityand the load on the network have to be considered.
With Max-Plus algebra, models can be developedthat are used in particular to analyse and optimise

event-discrete processes, such as in production chainsor timetables (Butkovič, 2010). This work deals withthe latter and therefore a model applying the Max-Plusalgebra is presented in detail.
The Max-Plus automaton, as described by NikolaBes̆inović and Rob M.P. Goverde in (Borndörfer et al.,2018), deals with the sequence of individual trains ona certain railway network. The travel times of theindividual trains are written in square matrices, thesize of which is equal to the number of tracks. Thesequence of the moves can be carried out accordinglyby multiplying these matrices. The result can then beused to determine the capacity occupation on the trackarea. That is the amount of time, that train paths blockthe tracks.
In this contribution this model is applied on a sectionof the freight train schedule between the two stationsWien Westbahnhof and Wien Hauptbahnhof. The data
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made available are part of the A&O project with theÖsterreichische Bundesbahnen AG. The capacity loadfor this dataset was calculated by MATLAB using thegiven timetables. The goal is to reduce the capacityload by swapping individual trains.

2. State of the art
The most common method in Europe to analyze thecapacity assessment of railway timetables is calledtimetable compression method. This method shiftstrain paths, such that the time difference between twopaths, that provides conflict-free runs of the trains,is minimal. But one disadvantage is the modellingof nodes, for expample switch areas. The timetablecompression method underestimates the capacity oc-cupation in this issue (Lindner, 2011).

An analytic model for capacity assessment of nodesis the Max-Plus automaton. The model is described andintroduced with a small example by Nikola Bes̆inovićand Rob M.P. Goverde in (Borndörfer et al., 2018) andalso shortly in (Heidergott et al., 2014). However, it isnot applied on a real timetable, which is presented inthis work.

3. Max-Plus algebra
The Max-Plus algebra provides the mathematical ba-sics for the implemented model. As mentioned byHeidergott et al. (2014), the Max-Plus algebra Rmax =(Rmax,⊕, ε,⊗, 0) is a commutative half ring with a neu-tral element over the body Rmax := R ∪ {ε}. For thevariable ε applies ε := –∞. For a,b ∈ Rmax the opera-tions ⊕ and ⊗ are defined as follows,

a⊕ b := max{a,b},
a⊗ b := a + b,

where max and + are the conventional operationsknown from real numbers.
As a commutative half ring with a neutral element,the operators ⊕ and ⊗ are associative as well as com-mutative and have the neutral elements ε and 0 re-spectively. Furthermore, the operation ⊗ is distributivewith respect to ⊕. Apart from that, ⊕ is idempotentand ε is absorbing with respect to ⊗.
The concept of potency can now be redefined withinMax-Plus algebra. The symbol · denotes the conven-tional multiplication within the real numbers.

a⊗b = a⊗ a⊗ ...⊗ a︸ ︷︷ ︸
b times

= b · a.

The Max-Plus algebra can also be expanded on vec-tors and matrices in the following sense. Be Rn×mmax theset of all n×mmatrices with values in Rmax. The opera-tions can be taken analogously. For simpler representa-

tion, variables with underscores, such as n, are definedas the set of all numbers up to itself n := {1, 2, ...,n}.
[A⊕ B]ij := aij ⊕ bij = max{aij,bij},
∀A,B ∈ Rn×mmax i ∈ n, j ∈ m.

The maximum of the respective entries is thus calcu-lated component by component.

[A⊗ B]ik := l⊕
j=1
aij ⊗ bjk = max

j∈l
{aij + bjk},

∀A ∈ Rn×lmax,B ∈ Rl×mmax i ∈ n, j ∈ l, k ∈ m.

A⊗b := A⊗ A⊗ ...⊗ A︸ ︷︷ ︸
b times

,
∀A ∈ Rn×nmax ,b ∈ R.

These operations have as well neutral elements. An
n×mmatrix, whose entries are all equal to ε, is neutralwith respect to ⊕ and is denoted by E(n,m). The matrix
E(n,m), defined by

[E(n,m)]ij :=
{ 0 i = j,
ε sonst,

is the neutral element with respect to ⊗. For n = m,
E(n,n) is also called the unit matrix.

By using ⊕ component by component, most of theproperties of Rmax are transferred to Rn×nmax . Only theoperation ⊗ is not commutative. Since this propertyis missing, Rn×nmax is called a half-ring with neutralelement, because apart from that, the attributes areadopted analogously from Rmax.

4. Max-Plus automaton

A planned rail timetable can be modeled as a discreteevent dynamic system (DEDS) using the Max-Plus al-gebra. This model is an irreducible first-order modelof the form
x(k) = A⊗ x(k – 1)⊕ B⊗ u(k).

In the following the Max-Plus automaton is presented,with which the infrastructure resources and the block-ing of these by trains can be represented. Hence thecapacity load on the resources can be calculated accord-ingly (Borndörfer et al., 2018).
4.1. Structure of the model

A Max-Plus automaton is a tuple H = (T,R,M, s, f).Hereby T describes the set of all trains that can block re-sources. The resources are the tracks and are described
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as a set by R. The mapping M : T → R
|R|×|R|
max is definedas in (1). It assigns every train a matrix.

[M]ij(l) =


0 for i = j, i /∈ R(l),
fj(l) – si(l) for i, j ∈ R(l),

ε else.
(1)

The start time of train l on resource i is describedby si(l). The value fi(l) describes the time, when thetrack i is left by train l. These values are combined to
the |R|-dimensional vectors s(l) ∈ R|R|

max and f(l) ∈ R|R|
max.An entry in the matrix M as defined in (1) thus standsfor the period of time between leaving resource j andstarting i, if the train l uses i and j.

A schedule w = l1 · · · ln, with l1, ..., ln ∈ T, describes anordered sequence of moves. The load on all train linesis characterized by M(w), which can be calculated by
M(w) = M(l1 · · · ln) = M(l1)⊗ ...⊗M(ln).

In order to determine the capacity load µ(w) of atimetable w, an upper limit x(w) of this is required,where x(w) = M(w) ⊗ x(e). The entries of the vector
x(e) ∈ R|R|

max are all equal to 0. Since we are alwaysexamining periodic timetables, we add the first trainat the end of w, since the start time of this symbolizesthe end of the capacity load. That first train will bedesignated with a. The calculation of µ(w) is now doneas in (2). The minimal component of the already cal-culated upper limit is taken, but as we look at periodictimetables, the travel time of the first train of the nextperiod has to be subtracted.
µ(w) = min

i∈R(a)
(
xi(wa) – (fi(a) – si(a))) (2)

Since the Max-Plus automaton allows the trains torun just gradually and thus binds them to the tracksections in a given order, additional models are requiredto represent overtaking, changing passengers or traincoupling or decoupling, which is not considered here(Borndörfer et al., 2018).
4.2. Freight train traffic in the southwest of Vienna

This model is now used to analyze a timetable betweenWien Westbahnhof and Wien Hauptbahnhof. This con-tains 21 freight trains that travel on 15 different tracks,so it is only a small extract of the actual plan. Thedata is available as part of the A&O project with theÖsterreichische Bundesbahnen AG.
The plan is initially included as a table in MATLABand then the individual columns required are saved asvectors. In this way, the start and end times of theindividual trains on the respective tracks can be deter-mined, whereby it is assumed that each train needsabout five seconds after arriving on the next track untilit has left the previous track section. Then the map-

ping matrix M can be calculated. In table 1 we cansee a part of such a matrix, for example for the firsttrain, which starts at Wien Westbahnhof (track 1) andarrives at Wien Hauptbahnhof (track 12). The first en-try describes, that the train needs 5 seconds or 0.0833minutes for leaving the first track after he started. Theentry (1, 12) describes, as the twelfth track is the lastone, that the train drives 15 minutes and 5 seconds intotal on the resources. As the entries in the columns13, 14 and 15 are all –∞, these three tracks are not usedby the first train.
Table 1. Matrix of the first train, in which the times between thestations are shown.

1 2 3 12 13 14 15
1 0.0833 1.0833 3.0833 . . . 15.0833 -Inf -Inf -Inf
2 -0.9167 0.0833 2.0833 . . . 14.0833 -Inf -Inf -Inf

...
...

... . . . ...
...

...
...

15 -Inf -Inf -Inf . . . -Inf -Inf -Inf 0

As described in section 4.1, we calculate the capacityload of the route section, which is µ1 = 466.75, withminutes selected as the unit.
Furthermore it is interesting to compare the load if,for example, the order of two trains is reversed. This isachieved by swapping two columns of the matrices inthe code, each of which contains the start and end timesof the according trains. For example, the capacity load(µ2 = 442.75) can be reduced by 24 minutes if the trains19 and 20 change order. We will henceforth denote theoriginal sequence of trains as variant 1, the sequencewith swapped trains 19 and 20 as variant 2.
The individual routes of the trains can be graphi-cally illustrated, as seen in Figure 1. The circles ◦ showthe individual stations, the arrows → describe the wayof the respective train. Train 18 starts from the sta-tion Wien Westbahnhof and ends at the station WienHauptbahnhof.
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Figure 1. Course of the trains 18-21
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Figure 2. Comparison of the times of trains - variant 1 (left) and variant 2 (right)

Variant 1 now denotes the sequence to which thecapacity load µ1 belongs, analogously for variant 2 andthe value µ2, i.e. for the reversed sequence of train19 and train 20. The different values of µ1 and µ2 areparticularly evident in the pictures in figure 2. Due tothe changed order of train 19 and train 20, neighboringtrains now have similar routes, which means that thetrains can start earlier. Hence the difference of 24minutes results. This difference can be seen by the factthat train 21 in variant 1, depicted in the left picturein figure 2, leaves track 1 at a time of 89 minutes, butin variant 2, shown in the right picture in figure 2,already at 65 minutes. This indicates that variant 2is the better one, since the time, when trains blockresources is lowered.

5. Conclusion

In this work, the Max-Plus algebra and its applica-tion for train schedule analysis and optimization werepresented. In particular, the capacity assessement ofnodes is evaluated.
The computational effort displays, that the Max-Plus automaton is only suitable for small networksor timetables, if it can reproduce them in detail. Theinfrastructure, such as individual routes and trains,can be easily embedded in the model, whereby a shortperiod of the timetable is advantageous.
The work can now be expanded or deepened in a fewaspects. In the application example of the Max-Plusautomaton, a possible improvement of the timetablewas presented in order to reduce the capacity assesse-ment. The investigated sequence of variant 2 was animprovement, but it probably was not the optimum ofthe train schedule. This can of course be optimized,however (n–1)! possibilities must be executed, whereas

n is the number of trains to be examined. These were

in this case study 2.432902 · 1018 different cases. Thecalculation of one case takes approximately 0.1 sec-onds, so the calculation of all cases would last around7.7147 · 109 years. This fact hints, that the Max-Plusautomaton can improve the capacity load, but even forthe small extent of 21 trains, as in this case study, it isnearly impossible to find the optimum. Therefore onlytwo cases were considered here. This shows, that themodel is not very suitable for optimization of systemsof larger dimensions, but at least can improve them.In a future contribution the idea is to compare the in-troduced approach with another modelling approach asdescribed in Heidergott et al. (2014), which is also basedon the Max-Plus algebra. They introduce a methodto map larger networks with more conditions, calledPerformance Evaluation of Timed Events in Railways("PETER").
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