Circumferential cracking in conventional metal spinning process

  • Huy Hoan Nguyen 
  • Henri Champliaud 
  • Van Ngan Lê 
  • a,b,c Mechanical Engineering Department, École de Technologie Supérieure, Montréal, Québec, H3C 1K3, Canada
Cite as
Nguyen H.H., Champliaud H., Lê V.N. (2020). Circumferential cracking in conventional metal spinning process. Proceedings of the 32nd European Modeling & Simulation Symposium (EMSS 2020), pp. 165-170. DOI: https://doi.org/10.46354/i3m.2020.emss.023

Abstract

Circumferential cracking of conventional metal spinning process is investigated by means of finite element simulation using the Generalized Incremental Stress State dependent damage model (GISSMO). This model provides a damage scalar as an indicator to remove elements on where a crack appears. Result show that simulation predictions are in very good agreement with experiment cracking locations. A region around the cracking area deforms in the opposite direction of a roller’s stroke during cracking. This phenomenon is considered as a reason for circumferential cracking at the interaction between a plate and a tailstock. This paper shows a successful damage model to predict circumferential crack and new insights into this defect.

References

  1. A. Haufe M. Feucht, P. DuBois and T. Borvall F.N., 2010. A comparison of recent damage and failure models for steel materials in crashworthiness application in LS-DYNA, 1–39.
  2. Andrade F. (Daimler A., Feucht M. (Daimler A., and Haufe A. (DYNAmore G., 2014. On the Prediction of Material Failure in LS-DYNA ® : A Comparison Between GISSMO and DIEM, 1–12.
  3. Chen S.W., Gao P.F., Zhan M., Ma F., Zhang H.R., and Xu R.Q., 2019. Determination of formability considering wrinkling defect in first-pass conventional spinning with linear roller path, 265, 44–55.
  4. Effelsberg J., Haufe A., Feucht M., Neukamm F., and Bois P. Du, 2012. On parameter identification for the GISSMO damage model, (3), 1–12.
  5. Kong Q., Yu Z., Zhao Y., Wang H., and Lin Z., 2017. A study of severe flange wrinkling in first-pass conventional spinning of hemispherical part, 93(9–12), 3583–3598.
  6. Mackenzie A.C., Hancock J.W., and Brown D.K., 1977. On the influence of state of stress on ductile failure initiation in high strength steels.
  7. Music O., Allwood J.M., and Kawai K., 2010. A review of the mechanics of metal spinning, 210(1), 3–23. 
  8. Needleman A., and Tvergaard V., 1984. An analysis of ductile rupture in notched bars.
  9. Neukamm F, Feucht M., Haufe A., and Roll K., 2008. On Closing the Constitutive Gap Between Forming and Crash Simulation (pp. 21–32).
  10. Neukamm Frieder, Feucht M., and Haufe A., 2009. Considering damage history in crashworthiness simulations.
  11. Nguyen H.H., Champliaud H., and Lê V.N., 2018. Dynamic finite element modeling of metal
    spinning process with a stationary mandrel and a rotating tool, 91–96.