
   
 

© 2020 The Authors. This article is an open access article distributed under the terms and conditions of the Creative 
Commons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). 

 
 

165 

32nd European Modeling & Simulation Symposium 
17th International Multidisciplinary Modeling & Simulation Multiconference 

 
ISSN 2724-0029 ISBN 978-88-85741-44-7 © 2020 The Authors. 
DOI: 10.46354/i3m.2020.emss.023 

Circumferential cracking in conventional Metal 
Spinning Process 

Huy Hoan Nguyen1,*, Henri Champliaud1 and Van Ngan Lê1 

1 Mechanical Engineering Department, École de Technologie Supérieure, Montréal, Québec, H3C 1K3, Canada 

*Corresponding author. Email address: huy-hoan.nguyen.1@ens.etsmtl.ca 
 
 

Abstract 
Circumferential cracking of conventional metal spinning process is investigated by means of finite element simulation using the 
Generalized Incremental Stress State dependent damage model (GISSMO). This model provides a damage scalar as an indicator 
to remove elements on where a crack appears. Result show that simulation predictions are in very good agreement with 
experiment cracking locations.  A region around the cracking area deforms in the opposite direction of a roller’s stroke during 
cracking. This phenomenon is considered as a reason for circumferential cracking at the interaction between a plate and a 
tailstock. This paper shows a successful damage model to predict circumferential crack and new insights into this defect. 
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1. Introduction 

Metal spinning is a process of forming a circular plate 
or disc into an axisymmetric part over a rotating 
mandrel. The elementary components of the process 
are a circular plate (Figure 1a) required to be formed, a 
rotating mandrel (Figure 1b), a tailstock for clamping 
the plate on the mandrel (Figure 1c), a forming tool or 
roller (Figure 1d). Simultaneous combination of roller 
path (Figure 1f) and mandrel rotational speed (Figure 
1e) causes the initial flat plate to be formed into an 
axisymmetric shape over the mandrel (Figure 1g). 

The most common defects in the spinning process 
are wrinkling, circumferential crack and radial crack. 
However, the wrinkling is the only failure which has 
been conducted so far by some authors such as (Chen et 
al. 2019; Kong, Yu, Zhao, Wang and Lin 2017) . On the 
review of spinning process (Music, Allwood and Kawai 
2010), the circumferential crack can be observed 
intuitively by the high tensile radial stress. In this 
paper, the Finite Element method is used to analysis 

the circumferential crack observed in the experiment of 
one - path conventional spinning process. This 
phenomenon is presented in Figure 3 where the plate 
suffered to the complete circumferential crack which 
create two separated part after failure. The 
experimental configuration is showed in Figure 2. The 
roller deforms the 2mm thickness aluminum plate at a 
clearance of 10mm away from the mandrel. 

In the literature of predicting material failure, there 
are three common approaches which are based on the 
maximum effective plastic strain, Gurson yield 
criterion and the Generalized Incremental Stress State 
dependent damage model (GISSMO). 

In case of failure prediction based on the maximum 
effective plastic strain, the material is considered as 
failure when the effective plastic strain reaches a 
critical value. The critical value usually is the maximum 
true plastic strain obtained from the tensile test. The 
failure sets on if the effective plastic strain reaches the 
maximum true plastic strain.  However, these terms are 
defined in the Appendix A and Appendix B by an 
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assumption that the material is isochoric meaning the 
volume is constant during deformation. This 
assumption is only applied for the plastic deformation. 
In the other hand, the fracture is pressure - dependent. 
Therefore, these terms are not properly defined beyond 
the plastic hence they cannot be used to assess the 
failure of the material. 

 
Figure 1. Metal spinning process, (a) a circular plate, (b) a mandrel, 
(c) a tailstock, (d) a roller, (e) mandrel rotation, (f) roller path, (g) 
final part 

 
Figure 2. Experiment configuration, (a) a plate; (b) a mandrel; (c) a 
roller 

 

 
Figure 3. Circumferential crack; (a) the plate; (b) circumferential 
crack line; (c) failure part; (d) tailstock mounted hole 

The Gurson yield criterion is the micromechanical 
model which is described by nucleation, growth and 
coalescence of micro voids (Needleman and Tvergaard 
1984). This model uses the alternative yield function 
which applied for both plastic stage and damage stage. 
Therefore, the plastic model has to be replaced by the 
Gurson model hence the predefined plastic model 
cannot be chosen freely for example as anisotropic 
plasticity, etc. This is a disadvantage of the Gurson 
yield criterion. 

The material model called GISSMO, developed by 
(NeukammF, Feucht, Haufe and Roll 2008; 
NeukammFrieder, Feucht and Haufe 2009), introduces 
the damage parameter in the material which can fully 
describe the material softening and fracture. In 
addition, this model resolves the Gurson’s 
disadvantage which is independent to the plasticity 
formula. This model has been widely used in the 
crashworthiness and forming process simulation (A. 
Haufe M. Feucht, P. DuBois and T. Borvall 2010; 
Effelsberg, Haufe, Feucht, Neukamm and Bois 2012). 

Therefore, GISSMO is used to simulate the 
circumferential cracking in metal spinning process. In 
the next sections, the GISSMO’s formula is presented 
shortly. This formula illustrates the meaning and the 
number of parameters needing to be known. A simple 
strategy, applied only for the spinning process, is 
proposed to obtain these parameters. Finally, the 
simulation of spinning process using the GISSMO is 
conducted and analyzed. 

2. GISSMO for predicting failure in spinning 
process 

The evolution of material under deformation contains 
three states in the orders of elastic, plasticity and 
fracture. Each state requires some properties for 
complete definition. Shell element is used to modeling 
the thin sheet metal with plane stress condition. 
Therefore, the material model now only focuses to 2D 
stress and 2D strain. 

2.1. Constitutive in elastic region 

In the elastic region, the material’s properties are 
assumed to be isotropic. The relationship of stress and 
strain is linear and presented as below 

[
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𝜎22
𝜎12

] =
𝐸

1 − 𝜈2
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Two properties need to be determined are the Young 
modulus 𝐸 and the Poisson’s ratio 𝜈. 

2.2. Constitutive in plastic region  

A switch of elastic to plastic state is determined by the 
yield condition as be written as 

𝑓(𝜎, 𝜖𝑝) = 𝜎𝑒𝑓𝑓(𝜎11, 𝜎22, 𝜎12) − 𝜎𝑌(𝜖𝑝) ≤ 0 (2) 
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With 𝜎𝑒𝑓𝑓: effective stress; 𝜎𝑌: yield stress; 𝜖𝑝: effective 
plastic strain 

If the yield condition is negative, the state of 
material is on the elastic and vice versa. The yield stress 
𝜎𝑌(𝜖𝑝 = 0) and the hardening stress curve 𝜎𝑌(𝜖𝑝) are 
determined experimentally by the tensile test because 
this test presents the uniform deformation in the gauge 
region and constant volume change (the Poisson’s 
ratio is 0.5) in plastic state hence the conversion from 
the measurement (force vs displacement) to the 
hardening stress curve 𝜎𝑌(𝜖𝑝) is straight forward as be 
illustrated in appendix A. 

The effective stress 𝜎𝑒𝑓𝑓  is Von Mises stress for 
assumption that the material is isotropic. 

2.3.  Constitutive in fracture region 

The Generalized Incremental Stress State dependent 
damage Model (GISSMO) is used for adding a damage 
to the existing material model (elastic and plasticity). A 
damage (scalar) 0 ≤ 𝐷 ≤ 1 is added to the stress tensor 

𝝈∗ = 𝝈(1 − 𝐷) (3) 

An assumption is that the material has already very 
small defect prescribed by 𝐷 = 1𝑒−20 so 𝝈∗ ≅ 𝝈. During 
the deformation, the defect expands itself inside the 
material until 𝐷 = 1 so 𝝈∗ = 0 at which the material is 
totally fracture. 

According to a work (Mackenzie, Hancock and 
Brown 1977), the failure strain depends on a triaxiality 
which means that there are many failure strains 
respecting to various triaxiality. The triaxiality is 
defined as a ratio of pressure stress on the effective 
stress. 

𝜂 =
𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜎𝑧𝑧

3𝜎𝑒𝑓𝑓
 (4) 

The evolution of damage scalar is  

Δ𝐷 =
𝑛

𝜖𝑓𝑎𝑖𝑙𝑢𝑟𝑒(𝜂)
𝐷1−

1
𝑛𝛥𝜖𝑝 (5) 

 

With Δ𝐷: the incremental damage scalar 

D: the current damage 

n: the damage exponent 

𝜖𝑝: the effective plastic strain 

𝜖𝑓𝑎𝑖𝑙𝑢𝑟𝑒: the failure strain 

𝜂: the triaxiality 

In equation (5), two parameters damage exponent 𝑛 
and failure strain 𝜖𝑓𝑎𝑖𝑙𝑢𝑟𝑒  are unknown. The damage 
exponent 𝑛 is chosen so that the damage scalar only 
grows significantly at the final region of plastic strain 
instead of elastic and plastic region. Usually, 𝑛 = 3 is 
chosen. The effective plastic strain at which fracture is 

the failure strain. 

In conclusion, the fracture model needs the failure 
strain as a function of triaxiality. 

3. Strategies to determine model parameters 

Properties which are needed to obtain, are: 

For elastic  

E: The Young modulus 

𝜈: The Poisson’s ratio 

For 
plasticity 

 

𝜎𝑌(𝜖𝑝): The hardening curve 

For fracture  

𝜖𝑓𝑎𝑖𝑙𝑢𝑟𝑒(𝜂): The failure strain 

The properties 𝐸, 𝜈, 𝜎𝑌(𝜖𝑝) are obtained by tensile test. 
The hardening curve 𝜎𝑌(𝜖𝑝) is a function of effective 
plastic strain versus yield stress. In tensile test, the 
effective plastic strain is the true plastic strain and the 
yield stress is the true stress. They are calculated using 
equations in Appendix A. 

The final parameter, needed to determine, is the 
failure strain curve 𝜖𝑓𝑎𝑖𝑙𝑢𝑟𝑒(𝜂) which is a collection of 
failure strain respected to various triaxialities. This 
parameter requires a numerous of experimental tests, 
including shear 00, shear 450, small tensile test, 
notched tensile test and biaxial test (Andrade, Feucht 
and Haufe 2014) to fully define which are expensive to 
do. However, the simulation of spinning process 
showed that the critical region has the triaxiality of 0.5. 
Fortunately, the fracture region in the tensile test also 
has the triaxiality of 0.5 showed in Figure 4 which is the 
same as spinning process circumferential crack area. 
This means that the state of stress on the failure period 
is the same of both tensile test and spinning process. 
Therefore, the only failure strain of tensile test is 
enough to predict circumferential crack for spinning 
process. 

 
Figure 4. Stress - strain curve and triaxiality 

The failure strain is obtained by reverse – 
engineering approach because the effective plastic 

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,00 0,10 0,20

T
ri

ax
ia

li
ty

S
tr

es
s 

(G
P

a)

Strain (mm/mm)

Stress - strain curve

Triaxiality



168 | 32nd European Modeling & Simulation Symposium, EMSS 2020 
 

 

strain in damage area cannot be calculated by the data 
from the tensile test. These formulas in the Appendix is 
only applicable in the plasticity region. The steps are: 

• Calculate the young modulus, effective plastic 
strain versus yield stress. 

•  Conduct tensile test simulation. This should give 
the same stress – strain curve as tensile test 
experiment. 

•  In the tensile test simulation, note the maximum 
effective plastic strain according to the elongation 
of failure in the experiment tensile test. 

•  This value is chosen as an initial failure strain. The 
tensile test simulation is conducted. The expected 
result will be only different beyond necking point. 

•  Try to adjust the failure strain to match results 
between tensile test simulation and tensile test 
experiment. 

4. Analysis of simulation 

The circular disc is made from the aluminum 2024 with 
properties are presented in Table 1. 

Table 1. Aluminum 6061-T6 properties. 

Young modulus E = 56.388 GPa 

Yield offset 0.002 

Yield strength at offset σ𝑦 = 347.9 MPa 

Engineering ultimate tensile 
strength 

EUTS = 487.4 MPa 

Mass density 2.7E-6 kg/mm3 

The material model is isotropic elastoplastic using a 
power law hardening rule. 

𝜎𝑡 = 𝐾𝜖𝑡
𝑛 (6) 

With 

𝜎𝑡: True stress 

𝜖𝑡: True strain 

𝐾: Strength coefficient 

𝑛: Strain hardening coefficient 

The values of 𝐾 and n are 0.1642 and 0.7723 
respectively. The failure strain is 0.75. The output of a 
material model with GISSMO is showed in Figure 5. 

The kinematic setup uses a special approach 
developed by (Nguyen, Champliaud and Lê 2018). This 
setup requires the stationary mandrel and so the 
rotating tool. The implicit time integration scheme is 
used to eliminate the trial – error of mass scaling 
guess-work and provides an unconditional stable. 

The Figure 6 showed the first place where crack is 
initial. The Figure 7 showed the crack grown in the 
circumferential direction and expected to complete a 
circle at the intersection of the plate and the mandrel. 
This position matched exactly with the experiment 
showed in Figure 3. 

 

 
Figure 5. Engineering stress - strain curve of experiment and 
material model 

 
Figure 6. Circumferential crack at beginning 

 
Figure 7. Circumferential crack at ending 
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Figure 8. Displacement contribution when cracking; a. Roller contact 
area; b. Displacement around circumferential cracking 

The displacement around cracking is in the opposite 
direction with the stroke direction of the roller where is 
showed in Figure 8. Therefore, this area doesn’t get 
support from the mandrel behind it. The stress state in 
this area, showed in Figure 9, is the same as the middle 
of tensile test beyond the necking moment. The 
magnitude of this displacement increases gradually 
following the roller’s stroke increment until damage 
reach unity then those elements were deleted as 
cracking happened. 

 
Figure 9. Stress state at cracking area; (a) metal spinning process; 
(b) tensile test 

5. Conclusion 

(1) The GISSMO used in spinning process is fully 
developed. The failure strain is calculated by reverse 
engineering method from the tensile test simulation. 
The stress – strain curve output of the model is seen 
matched well to experiment. 

(2) The spinning process simulation showed the 
promised results which matched to the experiment. 

(3) The circumferential cracking mechanism was 
presented thoughtfully. This knowledge has a potential 
to propose a theoretical approach to calculate the 
process parameters such as rotating speed, feed ratio 
and paths, roller diameter and radius, etc.  
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Appendix A. Engineering stress – strain to true 
stress - strain conversion 

L, L0 are the current and original gauge length. 
Engineering strain is defined as 

ϵengineering =
L-L0
L0

=
L

L0
-1 (A.1) 

True strain is calculated from engineering strain as 

a 
b 

(a) (b) 
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ϵtrue = ln (
L

L0
)

→ ϵtrue = ln(ϵengineering-1)

 (A.2) 

The conversion of engineering stress to true stress: 

Definition of A, A0 are the current and original cross 
section area. Engineering stress refers to origin area, 
σengineering =

P

A0
 while true stress refers to current area 

σtrue =
P

A
, thus the relation between engineering stress 

and true stress is 

σtrue
σengineering

=
A0

A
 (A.3) 

Because the change of volume is constant in the plastic 
region which yields 

AL = A0L0 (A.4) 

The formula is valid before necking onset. Substitute 
equation () and (A.4) into equation (A.), the true stress 
is 

σtrue = σengineering(ϵengineering + 1) (A.5) 

Appendix B. The definition of the effective 
plastic strain 

The effective plastic strain is defined intuitively by a 
similar formula as the effective stress (Von Mises). The 
incremental form of effective plastic strain is defined as 

dϵp = C√(dϵp1-dϵp2)
2
+ (dϵp2-dϵp3)

2
+ (dϵp3-dϵp1)

2 (B.1) 

With C is an unknown parameter. C is chosen such as dϵp 
reduces to dϵp1 in case of tensile test. The material does 
not change its volume during plastic so the Poisson’s 
ratio is 0.5. Therefore, dϵp2 = dϵp3 = -

1

2
dϵp1 which dϵp2, 

dϵp3 is the incremental transverse plastic strain and dϵp1 
is the incremental axial plastic strain in tensile test. 
Based on this information, the equation () becomes 

dϵp = Cdϵp1√
9

4
+ 0 +

9

4
= C

3

√2
dϵp1 (B.2) 

Applies dϵp = dϵp1, so C =
√2

3
. Finally, the incremental 

plastic strain is 

dϵp =
√2

3
√(dϵp1-dϵp2)

2
+ (dϵp2-dϵp3)

2
+ (dϵp3-dϵp1)

2 (B.3) 

 

 


