Modeling and implementation of an ADC based grid-connected voltage source inverter for real-time simulation based on FPGA

  • Chunyu Zhang ,
  • Shouxiang Wang ,
  • Yanan Zhou ,
  • Guoqiang Zu 
  • a,b Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China
  • a,b 2 Tianjin Key Laboratory of Power System Simulation and Control, Tianjin University, Tianjin 300072, China
  • Tianjin Electric Power Company, Tianjin 300072, China
  • Tianjin Electric Power Research Institute, Tianjin 300072, China
Cite as
Zhang C., Wang S., Zhou Y., Zu G. (2020). Modeling and implementation of an ADC based grid-connected voltage source inverter for real-time simulation based on FPGA. Proceedings of the 32nd European Modeling & Simulation Symposium (EMSS 2020), pp. 221-226. DOI: https://doi.org/10.46354/i3m.2020.emss.031

Abstract

With the development of distributed generations, the related real-time simulation technology has drawn extensive attention. In the distributed generation units, the power electronics are critical parts. In order to better deal with challenges of the large number of power electronic devices connected to the distribution network, this paper presents an embedded real-time simulation model based on associated discrete circuit (ADC) for a three-phase voltage source inverter. This model can be implemented in a field-programmable gate array (FPGA). And the FPGA can reduce the computational burden of power electronics simulation, because of its powerful parallel computing performance. First of all, a grid-connected power electronic inverter with a three phase RL filter model is built based on the ADC modeling approach, which can enhance the small step simulation performance. Secondly, the phase-locked loop technology has been introduced into the system to track the information of the phase angle. Finally, a FPGA based voltage and current double loop control method is presented to ensure the stable operation. The circuit simulation results verify the effectiveness of the scheme.

References

  1. Mu, Q. , Liang, J. , Zhou, X. , Li, Y. and Zhang, X. . (2014). Improved ADC model of voltage-source converters
    in DC grids. IEEE transactions on power electronics, 29(11): 5738-5748. 
  2. Guo, X. , Yuan, J. , Tang, Y. and You, X. . (2018). Hardware in the loop real-time simulation for the associated discrete circuit modeling optimization method of power converters. Energies, 11(11).
  3. Dagbagi M. , Hemdani A. , Idkhajine L. , Naouar M. W. , Monmasson E. and Slama-Belkhodja I. . (2016).
    ADC-based embedded real-time simulator of a power converter implemented in a low-cost FPGA: application to a fault-tolerant control of a gridconnected voltage-source rectifier. IEEE transactions on industrial electronics, 63(2): 1179-1190.
  4. Hadizadeh, A. , Hashemi, M. , Labbaf, M. and Parniani, M. . (2018). A matrix-inversion technique for FPGAbased real-time EMT simulation of power converters. IEEE transactions on industrial electronics, 66(2): 1224-1234.
  5. Myaing, A. , and Dinavahi, V. . (2010). FPGA-based realtime emulation of power electronic systems with detailed representation of device characteristics. IEEE Transactions on Industrial Electronics, 58(1), 358-368.
  6. Umadevi K. and Nagarajan C. . (2019). Design and implementation of novel soft switching method based DC-DC converter with non-isolated coupled inductor in solar system using FPGA. Microprocessors and Microsystems. 73(2020): 1.
  7. Huang, Z. , and Dinavahi, V. . (2019). A fast and stable method for modeling generalized nonlinearities in
    power electronic circuit simulation and its realtime implementation. IEEE transactions on power electronics, 34(4): 3124-3138.
  8. Matar M. and Iravani R. . (2010). FPGA implementation of the power electronic converter model for real time simulation of electromagnetic transients. IEEE transactions on power delivery, 25(2): 852-860.
  9. Liu, C. , Ma, R. , Bai, H. , Li, Z. , Gechter, F. and Gao, F. . (2018). Hybrid modeling of power electronic system
    for hardware-in-the-loop application. Electric Power Systems Research, 163(OCT.), 502-512.
  10. Bayhan, S. , Abu-Rub, H. and Balog, R. S. . (2016). Model predictive control of quasi-z-source four-leg
    inverter. IEEE transactions on industrial electronics, 63(7): 4506-4516.
  11. Daisuke, Y. , Kawakami, N. , Ota, S. and Yokoyama, T. . (2006 June 18-22). Comparison of FPGA based digital control method for low carrier-frequency PWM inverter. 37th IEEE power electronics specialists conference.
  12. Harahap, C. R. . (2015). FRIT based PI tuning for speed control of PMSM using FPGA for high frequency SiC
    MOSFET inverter. ICIEV. IEEE.
  13. Juarez-Abad, J. , Linares-Flores, J. , Guzman-Ramirez, E. and Sira-Ramirez, H. . (2014). Generalized proportional integral tracking controller for a single-phase multilevel cascade inverter: an fpga implementation. IEEE transactions on industrial informatics, 10(1): 256-266.
  14. Blaabjerg, F. , Teodorescu, R. , Liserre, M. and Timbus, A. V. . (2006). Overview of control and grid synchronization for distributed power generation systems. IEEE transactions on industrial electronics, 53(5): 1398-1409.
  15. Blaabjerg, F. , Chen, Z. and Kjaer, S. B. . (2004). Power electronics as efficient interface in dispersed power generation systems. IEEE transactions on power  electronics, 19(5): 1184-1194.