The synthesis of the control function in optimal tasks as a N-dimensional area using parallel projection on 2D plane

  • Oleg Kofnov ,
  • Boris Sokolov ,
  • Vitaly Ushakov 
  • Saint Petersburg State University of Industrial Technologies and Design, Bolshaya Morskaya street, 18, Saint Petersburg, 191186, Russia
  • b,c St. Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences, 14-th Linia, VI, No. 39, Saint Petersburg, 199178, Russia
Cite as
Kofnov O., Sokolov B., Ushakov V. (2020). The synthesis of the control function in optimal tasks as a N-dimensional area using parallel projection on 2D plane. Proceedings of the 32nd European Modeling & Simulation Symposium (EMSS 2020), pp. 262-269. DOI: https://doi.org/10.46354/i3m.2020.emss.037

Abstract

Solving problems of multi-criteria decision analysis for Decision Support Systems (DSS) we need to proceed the complex system of N non-linear equations and inequalities which describe the solution feasible region. It means that we have to solve a heavy algebraic problem wasting a lot of computing resources. The best way to get the optimal decision is a describing the algebraic system in geometrical terms for graphical solving. The paper describes possible theoretical and program media for such tasks. The purpose is the synthesis of the optimal control function representation in N-dimensional space using its 2D projections in problems of Multi-Criteria Decision Analysis (MCDA) and Multi-Criteria Decision Making (MCDM).

References

  1. Avduevskii, V.S., Appolonov, I.V. and Barzilovich, E.Y. (1988). Nadezhnost' i effektivnost' v tekhnike (Reliability and efficiency in engineering. Handbook in 10 volumes. Iss. 3). Moscow, 328p. (in Russ.)
  2. Bisdorff, R., Meyer, P. and Roubens, M. (2008). R UBIS: A bipolar-valued outranking method for the choice problem. 4OR, 6:143-165.
  3. Boyd, S. and Vandenberghe, L. (2004). Convex Optimisation. Cambridge University Press. 730p.
  4. Bragge, J., Korhonen, P., Wallenius, H. and Wallenius, J. (2010). Bibliometric Analysis of Multiple Criteria Decision Making/Multiattribute Utility Theory. Lecture Notes in Economics and Mathematical Systems, 634:259-268.
  5. Ceyhan, G., Köksalan, M. and Lokman, B. (2019). Finding a representative nondominated set for
    multi-objective mixed integer programs. European Journal of Operational Research, 272(1):61-77.
  6. Chernous’ko, F. L. (1988). Ocenivanie fazovogo sostoyaniya dinamicheskih sistem (Estimation of
    Phase State of Dynamic Systems). Nauka, Moscow, 320p. (in Russ.)
  7. Dolgui, A., Ivanov, D., Sethi, S. P. and Sokolov, B. (2019). Scheduling in production, supply chain and Industry 4.0 systems by optimal control: fundamentals, state-of-the-art and applications.
    International Journal of Production Research, 57(2):411–432.
  8. Dorst, L., Fortijne, D. and Mann, S. (2007). Geometric Algebra for Computer Science. ELSEVIER, 614 p. 
  9. Eichfelder, G. (2009). An Adaptive Scalarization Method in Multiobjective Optimization. SIAM
    Journal on Optimization, 19:1694-1718.
  10. Figueira, J., Greco, S. and Słowiński, R. (2009). Building a set of additive value functions
    representing a reference preorder and intensities of preference: GRIP method. European Journal of Operational Research, 195:460-486.
  11. Holliday-Darr, K. A. (1998). Applied Descriptive Geometry. IML. Delmar Cengage Learning, 482p.
  12. Ivanov, D. and Sokolov, B. (2019). Simultaneous structural–operational control of supply chain
    dynamics and resilience. Annals of Operations Research, 276(1–2):1–23.
  13. Kazançoğlu, Y. and Burmaoğlu, S. (2013). ERP software selection with MCDM: application of TODIM method. International Journal of Business Information Systems, 13:435-452.
  14. Krasnoshchekov, P.S., Morozov, V.V. and Fyodorov V.V. (1979). Dekompoziciya v zadachah proektirovaniya (Decomposition in Design Problems). Isv. AN SSSR. Tekhnicheskaya Kibernetika, 2:7–18. (in Russ.)
  15. Kumar, A., Sah, B., Singh, A.R., Deng, Y., He, X., Kumar, P. and Bansal, R. (2017). A review of multi
    criteria decision making (MCDM) towards sustainable renewable energy development. Renewable and Sustainable Energy Reviews, 69:596-609.
  16. Lehmer, D. N. (2005). An Elementary Course in Synthetic Projection Geometry. The Project Gutenberg, 188p
  17. Lotov, A., Bushenkov, V. and Kamenev, G. (2001). Feasible Goals Method Search for Smart Decisions. Computing Centre RAS. Moscow, 240p.
  18. Philippov, P. V., Korolev, N. T. and Chistaya, I. V. (1986). Nachertatel’naya geometriya mnogomernogo prostranstva. Leningrad, 136p .(in Russ.)
  19. Sajja, R. (2013). VIKOR Method for multi criteria decision making in academic staff selection. Journal of Production Research and Management, 3:30-35.
  20. Sokolov, B., Yusupov, R. and Ivanov, D. (2015). Conceptual description of integrated risk modelling problems for managerial decisions in complex organisational and technical systems. International Journal of Risk Assessment and Management , 18:288-306.
  21. Tsvirkun, A.D. and Akindiev, V.K. (1993). Struktura mnogourovnevyh i krupnomasshtabnyh sistem (sintez i planirovanie razvitiya) (Structure of Multi-Level and Large-Scale Systems (Synthesis and Development Planning) ). Moscow, Nauka Publ.,160p. (in Russ.)
  22. Zha, S., Guo, y., Huang, S . and Wang, S. (2020). A Hybrid MCDM Method Using Combination Weight for the Selection of Facility Layout in the Manufacturing System: A Case Study.  Mathematical Problems in Engineering, 2020:1-16.