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Abstract 
Solving problems of multi-criteria decision analysis for Decision Support Systems (DSS) we need to proceed the complex 
system of N non-linear equations and inequalities which describe the solution feasible region. It means that we have to solve a 
heavy algebraic problem wasting a lot of computing resources. The best way to get the optimal decision is a describing the 
algebraic system in geometrical terms for graphical solving. The paper describes possible theoretical and program media for 
such tasks. The purpose is the synthesis of the optimal control function representation in N-dimensional space using its 2D 
projections in problems of Multi-Criteria Decision Analysis (MCDA) and Multi-Criteria Decision Making (MCDM). 
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1. Introduction 

Now the most important problem in all stages of a 
complex organization and technical system (COTS) 
life cycle (Sokolov et al., 2015) is a multi-criteria 
estimation task of management control effectiveness 
(Krasnoshchekov et al. 1979, Avduevskii et al. 1988, 
Tsvirkun and Akindiev, 1993). The prospective 
solution is based on dynamic interpretation of MCDA 
and COTS proactive management program technology. 
In that case the common algorithm of a Pareto set 
construction and research (the set of nondominated 
alternatives) for the studied class of problems of 
efficiency theory includes next base steps: 

Step 1. Formation, analysis and interpretation of input 

data used for the synthesis of COTS multi-structural 
macrostates. Construction and correction of 
description of models used for structural and 
functional synthesis of the COTS appearance and the 
COTS control system. 

Step 2. Planning of the problem solution of the 
synthesis of COTS multi-structural macrostates. 
Determination of time and resources costs needed for 
the discussed problem of analysis and synthesis of 
COTS proactive management effective variants. 

Step 3. Construction and approximation of feasible 
goals sets for logic-dynamic models describing COTS 
proactive management which implicitly determines 
COTS appearance variants (COTS multi-structural 
macrostates). Papers (Chernous’ko 1988, Dolgui et al. 
2019) discuss it in detail. 

https://creativecommons.org/licenses/by-nc-nd/4.0/
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Step 4. The set of COTS appearance requirements 
(particular indicators of COTS management 
effectiveness) are orthogonally projected on feasible 
goals sets of logic-dynamic models (Figure 1). As 
result (Dolgui et al. 2019, Ivanov and Sokolov 2019) the 
set of inconclusive decisions (also called the set of 

nondominated alternatives, the Pareto set) is formed. 

Step 5. Formation and interpretation of output data. 
Results are presented in some convenient form, for 
example, for adaptive program development of COTS 
progress proactive management and its corresponding 
impacts providing stable enough plans realization. 
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Figure 1. Construction of a Pareto set (the set of nondominated alternatives).   The set is selected by the bold line

We propose to use well-known methods of 
projective geometry, geometric algebra, Clifford 
algebra and geometric programming for realization 
this generalized algorithm. Before these methods 
discussions in multi-criteria estimation tasks of COTS 
management control effectiveness, let us shortly 
observe current ways of such problem solutions.  

2. State of the art 

There are a lot of methods for MCDA problems 
solving. The main idea of all methods is a 
simplification of final optimization expressions to 
provide for experts the best way to select the right 
decision using an appropriate set of criteria. Now we 
try to observe some popular methods and compare 
them with our method of projections. All methods are 
realized as software applications because the MCDA 
problem for DSS needs a lot of calculation resources. 

Some program solutions are based on an adaptive 
scalarization method (Eichfelder 2009) which aims to 
contract n criteria functions to one scalar function 
described the ideal system state. It must be led to the 
minimum or maximum for the optimal behavior of the 
management control function. Some trouble is in 
searching such function joining criteria of different 
dimensions. Also, this method squeezes the solution 
visualization for expert. We do not criticize this 
method but need to note some nuances of its use. 

Similar methods are also based on the Multi 
Attribute Utility Theory (Bragge et al. 2010). The right 
decision is being searched for the expectation 
maximum of some utility function. It shares decision 
areas for expert analysis because the selection of the 
right solution is based on the maximal utility function 
value expectation. The utility function tries to describe 
all preferences of selected cases. Using this method 
requires fixing two problems of correctly constructing 
the utility function and adjusting the expected value. 

Multi-objective Combinatorial Optimization 
(MOCO) is realized with the ONLINEMOCO web service 
(Ceyhan et al. 2019). Firstly, some nondominated 
points are found in the highest coverage gaps with 
Subset Based Algorithm. Then Territory Defining 
Algorithm requires a threshold coverage gap value to 
be satisfied by the final nondominated point set and 
uses this threshold to reduce the space searched by the 
algorithm. The method needs using two algorithms 
and does not guarantee the concrete solution. 

Some popular methods are united in the ELECTRE 
family of MCDA algorithms. For example, IRIS and VIP 
(Kumar et al. 2017) can be used for risk analysis in the 
situation of robustness fixing or multicriteria 
performances aggregating. Interactive Robustness 
analysis and parameters' Inference for multicriteria 
Sorting problems (IRIS) is specified when the decision 
maker cannot determine weights of criteria, but 
supplies an example assignment. The Variable 
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Interdependent Parameters (VIP) method uses 
different levels of detail to reflect each criterion 
significance. 

Rubis is a perspective method to select better 
alternatives from pairs and finally to choose the best 
one (Bisdorff et al. 2008). Whereas IRIS sorts 
alternatives into ordered classes based on outranking 
relation, Rubis is based on bipolar-valued outranking 
relation. It needs more time to make decision, but 
inspires better choice for experts. The Preference 
Ranking Organization for Enrichment of Evaluations 
(PROMETHEE) is similar to ELECTRE’s Rubis because 
it uses pairwise comparisons to range alternatives and 
criteria, but provides better visualization of selection 
and can be combined with other MCDM methods (Zha 
et al. 2020). 

The General Regression with Intensities of 
Preference (GRIP) method ranks a finite set of actions 
evaluated on multiple criteria (Figueira et al. 2009). In 
the first stage, GRIP collects input data, criteria and 
actions. In the second stage, a decision maker gives 
preference information for actions sorting. In the 
third stage, conditions are linear constructed and 
applied to value functions. In the fourth stage, the 
decision maker estimates value functions 
compatibility with given preference information and 
decides to accept the solution or change inconsistent 
preference information and restart with stage 2. 

The TODIM method is based on empirical evidence 

of psychology how decisions are effectively accepted 
in high risk situations (Kazancoglu and Burmaoglu, 
2013). The TODIM global value function aggregates all 
criteria values that makes possible to search the 
maximum of this function. The global function unites 
qualitative and quantitative data and provides the 
objective decision in result. 

VIKOR focuses on ranking and sorting alternatives 
in the presence of conflicting criteria (Sajja, 2013). An 
algorithm based on VIKOR calculates best and worst 
values of criteria functions and then seeks the 
compromise solution. The compromise can be 
evaluated with Manhattan and Chebyshev distances 
between the best and the worst values. It lets to 
resolve conflicts in the situation of big extremities. 

The method discussed in this paper was inspired by 
Lotov’s Feasible Goals Method (Lotov et al. 2001). The 
appropriate solutions set can be expressed 
geometrically in criteria space as a convex function. 
Physically it is a closed form included the Pareto set 
where the right decision can be selected. The decision 
can be estimated by the expert on the flat diagram of 
slices or projections of this form with a common 
coordinate system. Observing overlapped areas of 
possible solutions (so-called the decision map), the 
expert makes choice. But using analytical geometry to 
construct a convex form complicates the task. Several 
MCDM methods are compared in Table 1.  

 

Table 1. The MCDM methods comparison 

Method Calculation complexity Expert participation Visualization 

Adaptive scalarization method Medium Low Low 
Multi Attribute Utility High Low Low 
MOCO High Low Medium 
IRIS Medium Medium Low 
GRIP Medium High High 
PROMETHEE High Low High 
VIKOR High Low Low 
Feasible Goals Method High High High 
The method of parallel projections (proposed here) Low High High 

 

Methods of projective geometry could be used for 
making the shape image on the 2D plane. A practical 
mission of projective geometry is a graphical 
visualization of 3D in computer applications. There are 
a lot of variants to correspond an object to its 
projection in another space (Lehmer, 2005). Technical 
drawing uses the parallel projection to image the 3D 
thing onto the 2D plane. Two 2D projections onto the 
each to other perpendicular planes are enough for the 
full graphic description of this thing. In the case of 
more than 3 dimensions we can use projections onto 
the hyperplane or N-1 2D planes, where N is a number 
of space dimensions (Philippov et al., 1986). 

The practical targets of the projection using are 

• the looking for the coordinates of points on the 

surface of the ND object; 
• the measurement of the distances between points 

on the surface of the ND object, the calculation of 
the shortest way between them on the surface; 

• the determination of the polyline of the 
intersection of two or more ND objects. 

The polyline of the intersection of several ND 
objects consists extreme points of the control 
function. For instance, some process is described by 
the function of two variables. It means that such 
process in terms of the analytical geometry can be 
expressed as a 3D surface. The equation determining 
this surface is 

𝑓1(𝑥1, 𝑥2, 𝑥3) = 𝑐𝑜𝑛𝑠𝑡, (1) 

where x1, x2, x3 are Cartesian coordinates of the surface 
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points. 

Let approximate this surface by a simple shape. It 
can be a cone or some else. In the same time, we have 
some conditions in the analytical form which can be 
also described as a 3D shape (a cylinder, a sphere, etc.) 
Its equation is 

𝑓2(𝑥1, 𝑥2, 𝑥3) = 𝑐𝑜𝑛𝑠𝑡. (2) 

Thus, the intersection polyline equation is 

𝑝(𝑥1, 𝑥2, 𝑥3) = 𝑓2(𝑥1, 𝑥2, 𝑥3) ∩ 𝑓2(𝑥1, 𝑥2, 𝑥3). (3) 

This polyline p could be found analytically after 
solving of the system of process and conditions 
equations or graphically with descriptive geometry 
methods (Holliday-Darr, 1998). 

In the last case the 2D projections of shapes are 
used instead of real 3D forms (Figure 2). 

The cone intersects with the cylinder. To find the 
intersection line, we have to apply projections of an 
auxiliary form, for example, a sphere. The sphere 
intersects the cylinder and the cone by two circles. 
These circles cross in two points P1 and P2. On the 
Figure 2 the projections of these points are marked as 
p1 and p2 on plane H and as p’1 and p’2 on plane V.  

Using N auxiliary spheres of various radiuses and 
center points we can get projections of an enough 
number of such points P1, …, PN which compose the 
intersection line of the cone and the cylinder. It is the 
solvation of (3). 

 
Figure 2. Intersection in projections 

In the case of more than 3 dimensions, the problem 
could be solved by the same method, but we need more 
than 2 flat projections. So, this method is appropriate 
for every multicriterial problem. 

The sphere is a very simple body where all points 
are on the same distance from the sphere center. This 
singularity allows to use a sphere as auxiliary shape 
for a wide range of graphical tasks. For example, we 
store the data of our shapes projections in the 
database in tables of two columns each. Every record 
corresponds to one projection of one point on some 
plane. Such discrete data format matches a bitmap 
computer image. Putting the auxiliary sphere center 
inside the cross bodies we are able to get projections of 
the sphere in forms of lines, circles or ellipses 
presented as records of discrete points. With simple 
database SQL operations like SELECT … WHERE … we 
can find the points of intersection of sphere and 
original shapes projections. 

3. Materials and Methods 

Geometric algebra operates shapes using algebraic 
operations. Sometimes it calls Clifford algebra, but 
geometric algebra is only a special case of Clifford 
algebra. The methods of geometric algebra are being 
used for moving pictures of 3D objects on the 
computer screen. Like in projective geometry the 
simple flat forms are used for creating complex 
images (Dorst et al., 2007). For instance, a circle is 
described by three points с1, c2 and c3. 

𝐶 = 𝑐1⋀𝑐2⋀𝑐3. (4) 

where ⋀ symbol means the construction of a new 
geometric element through the points. The 
constructed element can be rotated with element R 
called a rotor 

𝐶 ⟼ 𝑅 𝐶/𝑅. (5) 

Notice that we are speaking about objects in 3D 
space. The line L can be constructed with points a1, a2 
and infinity ∞ 

𝐿 = 𝑎1⋀𝑎2⋀∞. (6) 

Line formula (6) is very similar to circle formula 
(4). To rotate something around the line L, we must 
use the rotor R 

𝑅 = exp (𝜙𝐿∗/2), (7) 

where ϕ is the rotation angle and L* is the dual of L. 

Similar to line the plane Π is described by three 
points p1, p2, p3 and infinity ∞ 

Π = 𝑝1⋀𝑝2⋀𝑝3⋀∞. (8) 

Another plane π can be specified by the normal 
vector n, the point p in π or the vector p perpendicular 
to n 

π = 𝑝 ↲ (𝐧∞) = 𝐧 − (𝐩 ∙ 𝐧)∞. (9) 

The most important operation is a reflection which 
can be described as 
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𝑋 ↦  −π𝑋/π, (10) 

where X is some reflected geometric element and  π is 
the plane of reflection. 

Software implementation of geometric algebra 
operators is performed in Ganja program project. 

Ganja.js package is intended to solve geometric 
algebra problems in up to 32 dimensions space. The 
package uses JavaScript language and some symbols 
and denotations of geometric algebra operators. There 
are some examples of shapes descriptions in Table 2. 

Table 2. Some shape description 

Shape Description in Ganja.js 

Cylinder cylinder = (r=1,h=1,x=32)=>wrap(lathe([!1e0,!(1e0+r*1e3),!(1e0+r*1e3+h*1e1),!(1e0+h*1e1)],x,1e23)) 
Torus torus = (r=.3,r2=.25,x=32,y=16)=>wrap(lathe((1+r*.5e03)>>>lathe(!(1e0+r2*(1e1+1e3)/2**.5),y,1e13),x,1e23)) 
Sphere sphere = (r=1,x=32,y=16)=>wrap(lathe(lathe(!(1e0+r*1e1),y,1e13,.5),x,1e23)) 
Cone cone = (r=1,h=1,x=64)=>wrap(lathe([!1e0,!(1e0+r*1e3),!(1e0+h*1e1)],x,1e23)) 
Arrow arrow    = ()=>[...cone(.15,.3),...cone(.15,0),...cylinder(.05,-2)] 

The example of two shapes intersection is on Figure 3. 

 
Figure 3. An intersection of two shapes approximating areas 
corresponding optimal solutions and boundary conditions 

Notice that Ganja allows to simulate the objects 
intersection projection in dynamic. For instance, a 
multicriterial process and its border conditions can be 
modeled by two shapes. Time including means that 
shapes are moving relative to each other. So, the line 
of intersection is changing its form and size 
depending on time. 

4. Results and Discussion 

Geometric programming solves non-linear 
optimization tasks in multidimensional space. The 
same problems are being solved by convex 
optimization (Boyd and Vandenberghe, 2004). The 
special case of such type of problems is the classic 
control problem. Let a dynamic system with discrete 
time points t=0,1,2,…,T controlled by impacts ut є Rm. 
The system function xt є Rn is expressed as 

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡, (11) 

where A є Rn*n and B є Rn*m are determined matrixes. 
We have to find optimal impacts u in conditions u0, …, 
uT-1 

𝑚𝑖𝑛 ∑ 𝑙(𝑥𝑡 , 𝑢𝑡) + 𝑙𝑇(𝑥𝑇)

𝑇−1

𝑡=0

,  (12) 

𝑠𝑢𝑏 {
𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡

(𝑥𝑡 , 𝑢𝑡) ∈ 𝐶, 𝑥𝑇 ∈ 𝐶𝑇
 

 

where l: Rn х Rm→R is every step’s cost, lT is a final cost, 
C and CT are confines. 

This problem can be solved by Python CVXPY 
module. The results are able to be presented 
numerically or graphically (Figure 4). 

Figure 4 shows four parallel projections of the 
control functions on planes formed by axes: 0t (time 
axis) and 0Xi/0Ui (impacts/state axes). 

Figures 5, 6 and 7 show attainability sets D(t,t0,x(t0)) 
for the investigated dynamical system. Figures 
illustrate three possible situation which can appear 
during one land control station services two satellites 
receiving their signals for different moments t1=7, 
t3=12.  Values along horizontal and vertical axes 
correspond common sent information volumes for 
different cases of information receiving and 
processing technology. Figure 5 demonstrates the 
absence of conflicts when interaction zones (IZ) do not 
intersect. Figure 6 shows the full intersection of IZs 
with maximal conflicts. The intermediate situation is 
on Figure 7 when IZs partially intersect each other. 

The analysis of these diagrams displays the 
geometrical method advantages for throughput 
estimation. 
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Figure 4. Diagrams might be interpreted as the solution projections 
onto planes u0t, x0t, etc. 
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Figure 5. IZs do not intersect 
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Figure 6. The full intersection of IZs 
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Figure 7. IZs partially intersect each other  

5. Conclusions 

Thus, the control function of a multicriterial system 
can be produced analytically or graphically. There are 
a lot of program applications which solve such tasks 
by different methods of mathematics. The geometric 
solutions are more appropriate by simpler calculations 
and better visualization of results. Some packages can 
be used for solving optimization problems with 
geometric algebra or programming geometry 
methods. We suggest using SQL language instructions 
to solve optimization problems by projective geometry 
methods. The best solution depends on the problem 
dimension, possible function approximation and 
available computing resources. 
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