Economics of Dairy Farm: Simulation Study

  • Marie Nedvědová ,
  • Jaroslav Marek ,
  • Alena Pozdílková ,
  • Tomáš Haloun 
  • a,b,c University of Pardubice, Faculty of Electrical Engineering and Informatics, Studentská 95, Pardubice, 532 10, Czech Republic
  • Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Veterinary Sciences, Prague, Czech Republic
Cite as
Nedvědová M., Marek J., Pozdílková A., Haloun T. (2020). Economics of Dairy Farm: Simulation Study. Proceedings of the 32nd European Modeling & Simulation Symposium (EMSS 2020), pp. 288-295. DOI: https://doi.org/10.46354/i3m.2020.emss.041

Abstract

The aim of this paper is to estimate economic consequences of an LDA (Left displaced abomasum) treated cow. After a surgery to correct this displacement, cows had a lower average milk yield, lower reproduction characteristics, and consequently a lower number of lactation cycles, less calves, longer period between calving, compared to other cows. We will use breeding simulation with the help of a constructed function to describe the price aspects. Knowledge of analysis of diary milk-yield production, probability of survival, and ability to reproduce will be used. The Arena software will be used for the simulation. The main goal is to estimate the lifelong profit of an individual cow from a group of healthy cows and an individual cow from a group with LDA disease.

References

  1. Bekara, M.E., Bareille, N. (2019). Quantification by simulation of the effect of herd management
    practices and cow fertility on the reproductive and economic performance of Holstein dairy herds.Journal of Dairy Science, 102(10):9435-9457.
  2. Calsamiglia, S., Astiz, S., Baucells, J., Castillejos, L. (2018). A stochastic dynamic model of a dairy farm to evaluate the technical and economic performance under different scenarios. Journal of Dairy Science, 101(8):7517-7530.
  3. Congleton, W.R., JR. (1983) Dynamic model for Combined Simulation of Dairy Management
    Strategies. Journal of Dairy Science, 67:644-680.
  4. Dooley, A.E., Smeaton, D., McDermott, A. (2020). A model of the New Zealand beef value chain. In: Zerger, A. and Argent, R.M. (eds.) MODSIM 2005 - International Congress on Modelling and
    Simulation: Advances and Applications for Management and Decision Making, 12 Dec 2005 - 15 Dec 2005. Melbourne, Australia: Modelling and Simulation Society of Australia and New Zealand, pp. 190-195. ISBN: 0-9758400-2-9.
  5. Hawkins, A., Burdine, K., Amaral-Phillips, D., Costa, J.H.C. (2019). An economic analysis of the costs associated with pre-weaning management strategies for dairy heifers. Animals, 9(7):No471.
  6. Haloun, T., Marek, J., Rajmon, R., Kršíková, M. (2016). Analysis in a time series of milk-yield production. In: Mathematical Methods in Economics 2016 (MME 2016). Liberec: Technická univerzita v Liberci. 2016. pp. 248-253. ISBN 978-80-7494-296-9.
  7. Hamann, H., Wolf, V., Scholz, H., Distl, O. (2004). Relationships between lactational incidence of
    displaced abomasum and milk production traits in German Holstein cows. J. Vet. Med. A., 51: 203-208. 
  8. Jorritsma, R, Westerlaan, B, Bierma, M., P, Frankena, K. (2008). Milk yield and survival of Holstein-Friesian dairy cattle after laparoscopic correction of left displaced abomasum. Vet Rec., 162(23):743-6.
  9. Louda, F. (2008). Ukazatele zabřezávání. In: Uplatnění biologických zásad při řízení reprodukce plemenic. pp. 26 – 27., Výzkumný ústav pro chov skotu s. r. o.
  10. Kariuki, C.M., van Arendonk, J.A.M., Kahi, A.K., Komen, H. (2019).Deterministic simulations to determine the impacts of economic and non-economic breeding objectives on sustainable intensification of developing smallholder dairy farms. Livestock Science, 226:7-12.
  11. Kelton, W.D., Randal, P., Sadowski, R., Zupick, N. B. (2015). Simulation with Arena. Sixth edition. New York, N.Y: McGraw-Hill Education.
  12. Kikuhara, K., Kumagai, H., Hirooka, H. (2009). Development and Evaluation of a Simulation Model for Dairy Cattle Production System Ingrated with Forage Crop Prediction. Asian-Aust. J. Anim. Sci., 22(1):57-71.
  13. Kikuhara, K., Hirooka, H. (2009). Application of a Simulation Model for Dairy Cattle Production
    Systems Integrated with Forage Crop Production: the Effects of Whole Crop Rice Silage Utilization on Nutrient Balances and Profitability. Asian -Aust. J.Anim. Sci., 22(2):216-224.
  14. Marek, J., Rajmon, R., Haloun, T.(2015). Critical evaluation of seven lactation curve estimation
    models. In: Abraham Ajith, Jiang Xin Hua, Snášel Václav, Pan Jeng -Shyang (eds.). Intelligent Data Analysis and Applications. Proceedings of the Second Euro-China Conference on Intelligent Data Analysis and Applications, ECC 2015. New York: Springer International Publishing, pp. 73 -84. ISBN:978-3-319-21206-7
  15. Marek, J.(2016). Various models for fitting of lactation curve and its curvatures.In: Boďa, M. (eds.). 5th International Scientific Conference FERNSTAT 2016, 22 Sep 2016 -23 Sep 2016. BanskaBystrica, Slovakia: Slovak Statistical and Demographic Society, pp. 72-83. ISBN 978-80-88946-74-8. ISSN 2453-9856.
  16. Mur-Novales, R., Lopez-Gatius, F., Fricke, P. M., Cabrera, V.E. (2018). An economic evaluation of
    management strategies to mitigate the negative effect of twinning in dairy herds. Journal of Dairy Science, 101(5):8335-8349.
  17. Pérez-Méndez, J.A., Roibás, D., Wall, A. (2020). Somatic cell counts, reproduction indicators, and technical efficiency in milk production: A stochastic frontier analysis for Spanish dairy farms. Journal of Dairy Science, 103(8):7141-7154.
  18. Shaver, R. (1997). Nutritional risk factors in the etiology of left displaced abomasum in dairy cows: a review. J. Dairy Sci. 80(10):2449-2453.
  19. Stewart, W. J. (2009). Probability, Markov chains, queues, and simulation: the mathematical basis of performance modeling. Princeton, Princeton University Press.