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Abstract 
The propagation of light pulses within waveguide Bragg gratings is investigated. The exact mathematical solution of the problem 
for the grating with rectangular groove shape is considered. The solution is valid for arbitrary grating amplitude and length both 
in the vicinity and far from Bragg wavelength. For this solution the distribution of field amplitudes within the grating, its 
reflectivity and the structure of resonances are studied. The effects of light pulse broadening, shape transformation and time 
delay due to interaction with the waveguide Bragg grating are analyzed using numerical simulations. 

Keywords: thin films, optical waveguides, Bragg gratings, waveguide modes, ultrashort light pulses. 
 
 

1. Introduction 

Optical waveguide interference filters with the 
longitudinal phase Bragg grating have extraordinary 
narrow transmission gap (at the order of 0.1 nm) and 
permit to separate individual spectral lines. Based on 
them distributed-feedback lasers gradually displace 
gas-discharge ones and now are widely used in 
integrated optical technologies. 

The principal of their operation is related with 
multiple coherent light reflections on each groove of 
the grating, leading to total reflection of individual 
(Bragg) wavelength. The period of the grating, the 
shape of the groove and its amplitude determine the 
transmission spectrum of the waveguide filter. Due to 
the big number of grooves (reaching tens of thousands) 

the device exhibits very narrow reflection resonances, 
comparable with the spectral width of ultrashort light 
pulses. 

We consider the two dimensional model of the 
optical waveguide interference filter, admitting the 
exact analytical solution. We analyze the structure of 
this solution and calculate the reflectivity and 
transmittivity spectra of the filter. It is demonstrated 
that the suggested model allows investigating the 
processes of ultrashort light pulses scattering on the 
periodic grating. 

2. State of the art 

The diffraction of light pulses on periodic structures 
(Sukhoivanov and Guryev, 2009) even in one spatial 
dimension (Karpov and Stolyarov, 1993) represents a 
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complicated mathematical problem, often solved 
numerically. To simplify the task we consider a model 
of a planar waveguide interference filter with the phase 
grating, for which the exact mathematical solution of 
Maxwell equations can be constructed by the help of 
Bloch theory, widely used for similar periodic problems 
in quantum mechanics (Kronig and Penney, 1930). In 
contrast to approximate approaches, such as Kogelnik 
theory (Kogelnik and Shank, 1972) or the method of 
sequential approximations, the considered model is 
exact. It is valid both close and far from the Bragg 
resonance and for arbitrary amplitude of the phase 
grating. This model permits us to investigate the 
structure of resonances, reflectivity and transmittivity 
of long waveguide Brag grating filters in broad spectral 
range and for various parameters of the periodic 
structure. The results are also valid for thin-film 
interference filters and mirrors. 

3. Materials and Methods 

3.1. Model description 

The suggested model is based on the exact solution of 
Maxwell`s equations in the self-consistent field regime 
for the planar waveguide, schematically presented in 
Figure 1. The waveguide consists of three layers: the 
light-guiding core film and two claddings. The phase 
grating, representing the alternating regions of low 
and high refractive index, is written in the waveguide 
plane (along the y-axis). The dielectric permittivities εi 
of the materials in all the three layers of the light-
guiding structure vary with equal amplitude Δε. The 
waveguide under consideration consists of the 
sequence of alternating short homogenous light-
guiding regions of the length 𝑑 2⁄ , where the waveguide 
mode effective refractive indices remain constant and 
equal 𝛽1

2 = 𝛽2 + 𝛥𝜀 and 𝛽2
2 = 𝛽2 + 𝛥𝜀, while the mode 

profile 𝑒(𝑧) is the same at every region. 

 
Figure 1. The structure of the planar waveguide with the phase 
grating written. 

Within each homogenous region the complex 
amplitude of electric field strength in the TE-polarized 
mode is given by 

𝐸
→
(𝑦, 𝑧) = 𝑥̂(𝐴𝑒𝑖𝛽𝑛𝑘𝑦 + 𝐵𝑒−𝑖𝛽𝑛𝑘𝑦)𝑒(𝑧) (1) 

for n = 1,2, where 𝑘 = 2𝜋 𝜆⁄ , 𝑥̂ is the unity  vector along 
the x axis and complex coefficients A, B differ from one 
region to another. On the other hand, the structure 
under investigation is d-periodic along the y-axis. The 
propagation of light throw it is described by the second 

order differential equations with periodically changing 
coefficients. For these equations the Floquet-Bloch 
theorem is valid, which states that their solution has 
the form of the multiplication of a periodic function 
𝛷(𝑦) and the exponential (throughout the whole 
considered structure): 

𝐸
→
(𝑦, 𝑧) = 𝑥̂𝛷(𝑦)𝑒𝑖𝛽̃𝑘𝑦𝑒(𝑧). (2) 

3.2. The structure of the solution 

To determine the value of the parameter 𝛽̃ and find the 
explicit form of the functions 𝛷(𝑦) in the equation (2) it 
is required to equate (1) and (2), impose the sawing 
conditions on the electric and magnetic field strength 
at the middle of the period and require the periodicity 
of the function 𝛷(𝑦) by imposing appropriate 
conditions at the period boundaries. It permits to derive 
the following dispersion relation for 𝛽: 

𝑐𝑜𝑠(𝛽̃𝑘𝑑) =
(𝛽2+𝛽1)

2

4𝛽2𝛽1
𝑐𝑜𝑠 ((𝛽2 + 𝛽1)𝑘

𝑑

2
) −

(𝛽2−𝛽1)
2

4𝛽2𝛽1
𝑐𝑜𝑠 ((𝛽2 − 𝛽1)𝑘

𝑑

2
). 

(3) 

It has two different solutions. One of them is shown 
graphically in Figure 2 (the parameters of the model are 
indicated in the insertion) while the other can be 
obtained by the change of the sign of 𝛽̃. 
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Figure 2. The 𝛽 dependence of the wavelength λ for one of the 
solutions of dispersion relation (5). The other solution is obtained by 
changing the sign of 𝛽. The parameters of the model are shown in 
the insertion. 

Bloch functions themselves are determined up to the 
common complex factor (due to the uniformity of the 
equations) and read 

𝛷(𝑦) = (𝑒𝑖𝛽̃𝑘𝑑 −
𝛽1 + 𝛽2
2𝛽1

𝑒−𝑖
(𝛽1−𝛽2)𝑘

𝑑
2

−
𝛽1 + 𝛽2
2𝛽1

𝑒−𝑖
(𝛽1+𝛽2)𝑘

𝑑
2) 𝑒−𝑖(𝛽̃−𝛽1)𝑘𝑦 + 

(𝑒𝑖𝛽̃𝑘𝑑 −
𝛽1 + 𝛽2
2𝛽1

𝑒𝑖
(𝛽1+𝛽2)𝑘

𝑑
2

−
𝛽1 − 𝛽2
2𝛽1

𝑒𝑖
(𝛽1−𝛽2)𝑘

𝑑
2) 𝑒−𝑖(𝛽̃+𝛽1)𝑘𝑦 

(4) 

for 𝑦 ∈ [0, 𝑑 2⁄ ] and 



302 | 32nd European Modeling & Simulation Symposium, EMSS 2020 
 

 

𝛷(𝑦)

= −(𝑒−𝑖𝛽̃𝑘𝑑 −
𝛽2 + 𝛽1
2𝛽2

𝑒𝑖
(𝛽2+𝛽1)𝑘

𝑑
2

−
𝛽2 − 𝛽1
2𝛽2

𝑒𝑖
(𝛽2−𝛽1)𝑘

𝑑
2) 𝑒−𝑖(𝛽̃−𝛽2)𝑘(𝑦−𝑑) − 

(𝑒−𝑖𝛽̃𝑘𝑑 −
𝛽2 − 𝛽1
2𝛽2

𝑒−𝑖
(𝛽2−𝛽1)𝑘

𝑑
2

−
𝛽2 + 𝛽1
2𝛽2

𝑒−𝑖
(𝛽2+𝛽1)𝑘

𝑑
2) 𝑒−𝑖(𝛽̃+𝛽2)𝑘(𝑦−𝑑) 

(5) 

for 𝑦 ∈ [𝑑 2⁄ , 𝑑]. Their domain of definition can be 
periodically extended to arbitrary number of periods by 
replacement of y with (y – Nd) (for integer N).  

Consider the behavior of obtained solution for 
various wavelengths λ. For simplicity, suppose there is 
no absorption (or amplification) in the waveguide. 
Then the propagation constants βn are real numbers. 
The solution of the dispersion relation (3) is different 
in different spectral regions. Far from the resonances 
the parameter 𝛽̃ is real and Bloch functions 𝛷±(𝑦), 
corresponding to different sign (+/-) of this parameter, 
are related with each other by the complex conjugation 
(the characteristic form of 𝛷+(𝑦) is illustrated in Figure 
3). 
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Figure 3. The graph of Bloch function outside the resonance (for λ = 
1100 nm). The parameters of the model are shown in the insertion. 

The regions of resonances are similar to the 
forbidden bands in quantum mechanics. In this regions 
the parameter 𝛽̃ has non-vanishing imaginary part and 

the exponential in the equation (2) describes the 
attenuation of field strength towards the interior of the 
phase grating. The energy of the incident wave is 
transmitted to the reflected one (i.e., Bragg resonant 
reflection occurs). Note, that functions 𝛷±(𝑦) are not 
related by complex conjugation, in general. For 
example, in even resonances, when 𝑅𝑒(𝛽̃) = 0 these 
functions are real-valued. 

4. Results and Discussion 

4.1. Narrow-bandwidth waveguide filters 

The constructed model can be employed for describing 
phase grating interference filters of the finite length L 
with the reflection maximum in the near IR region of 
wavelengths, e.g., C-telecom band near 1550 nm. 

For modeling such devices one needs to add two 
uniform waveguides to the left (y < 0) and to the right 
(y > L) side of the Bragg grating, presented in Figure 1. 
In these waveguides complex amplitudes of the electric 
field strength are given by 

𝐸
→
𝑙 (𝑦, 𝑧) = 𝑥̂𝐸𝑖(𝑒

𝑖𝛽𝑘𝑦 + 𝑅𝑎𝑒
−𝑖𝛽𝑘𝑦)𝑒(𝑧), 

𝐸
→
𝑟 (𝑦, 𝑧) = 𝑥̂𝐸𝑖𝑇𝑎𝑒

𝑖𝛽𝑘𝑦𝑒(𝑧) 
(6) 

and describe the incident, reflected and transmitted 
waves. Additional sawing conditions imposed at two 
resulting interfaces (i.e., at y = 0 and y = L) allow finding 
relative contributions of two linear-independent 
solutions (2) with 𝛷+(𝑦) and 𝛷−(𝑦) within the grating 
and determining complex amplitude reflection and 
transmission coefficients 𝑅𝑎 and 𝑇𝑎 (the corresponding 
formulas can be found in Appendix). 

The graphs of energy reflection and transmission 
coefficients 𝑅 = |𝑅𝑎|2.and 𝑇 = |𝑇𝑎|2 as the functions of 
the wavelength 𝜆 near the main resonance are 

shown in Figures 4 and 5. They explicitly demonstrate 
that for creating interference filters with very narrow 
transmittance gap (λ ~ 0.1 nm) long Bragg gratings 
with thousands of periods and low groove height ( ~ 
1  10-4) are required (see Figure 4). In contrast, the 
interference filter with the grating of 50 periods has λ 
of the order of tens nanometers. 
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Figure 4. Reflectivity R and transmittivity T coefficients of the grating with period d and length L as a function of incident wavelength . d = 
0.58712 мкм, L = 5  104  d,  = 1  10-4. 
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Figure 5. Reflectivity R and transmittivity T coefficients of the short grating with period d and length L as a function of incident wavelength . d = 
0.58712 мкм, L = 50  d,  = 0.05. 

 

4.2. Ultrashort light pulses 

For studying the interaction of light pulses with Brag 
gratings within the proposed model, it is convenient to 
use Gaussian packages. Electric field strength 
amplitude of the incident radiation is represented by 
the Fourier integral over monochromatic waves with 
Gaussian weight 

𝐸𝑖𝑝
→  
(𝑦, 𝑡) = 𝑅𝑒 ∫

𝜏0𝑑𝜔

2√𝜋
𝐸0𝑥̂𝑒

−
1

4
(𝜔−𝜔0)

2𝜏0
2

𝑒𝑖
𝜔

𝑐
𝛽𝑦−𝑖𝜔𝑡∞

∞ , (7) 

where 𝜏0 and 𝜔0 are the characteristic time and central 
frequency of the pulse, correspondingly, 𝐸0 denotes its 
complex amplitude in the center and 𝑐 is the speed of 
light in vacuum. For each monochromatic component 
of the wave package (7) complex amplitude 
reflactivition and transmission coefficients are known 
(and given by the equations (8) and (9) in Appendix). 
Then the reflected (transmitted) field amplitude is 
determined by the Fourier integral, similar to (6), with 
additional 𝑅𝑎 (𝑇𝑎) factor in the integrand. 

In practice, this integral is taken numerically with 
partial sum method. The limits of integration are 
usually chosen far enough from the central frequency 
to provide the effective descent of the spectral 
amplitude in the Gaussian package. We used the 
integration region of 𝜙 ∈ [−10,10] in terms of 
dimensionless variable 𝜙 = 𝜏0(𝜔 − 𝜔0). The integration 
step should be small enough to avoid the appearance of 
spurious Fourier-copies in the time region under 
investigation (we used 𝑑𝜙 = 0.02). 

Average intensity of radiation in the pulse is 
proportional to the squared absolute value of this 
integral and is represented in Figure 6 as a function of 
time. It is calculated for the Gaussian pulse with the 
duration 𝜏0= 0.1 ns and the central wavelength of 𝜆0 =
2𝜋𝑐 𝜔0⁄ = 1550.03 nm, incident on the Bragg filter, which 
has the main reflection resonance at 𝜆 = 1550 nm with 
the characteristic width ~ 0.07 nm (transmission and 
reflection spectra of this filter are shown in Figure 4). 
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Figure 6. Time dependence of the averaged intensity in the reflected 
(blue) and transmitted (red) signals for the interference filter 
exposed to ultrashort Gaussian light pulse (black). 

In the considered case of ultrashort pulse the 
spectral width of Gaussian package (approximately 
defined by 1 𝜏0⁄ ) becomes comparable with the 
frequency width of the reflection Bragg resonance of 
the interference filter. The specter of the incident wave 
changes in the scattering process. This results in the 
pulse shape distortion and the time delay, observed for 
the reflected and transmitted signal (see Figure 6). 

5. Conclusions 

The model of a two-dimensional waveguide 
interference filter, admitting the exact mathematical 
solution of Maxwell`s equations, has been considered. 
It has been employed for calculating the reflectivity and 
transmittivity coefficients of the particular grating 
filters and for studying the structure of resonances in 
them. This model permits to investigate the effects, 
related with the propagation of light pulses through 
Bragg gratings, namely the pulse broadening, its time 
delay and the transformation of the pulse shape. 
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Appendix A. 

For the completeness we provide the expressions for 
the complex amplitude reflection and transmission 
coefficients of the waveguide interference filter with 
the length 𝐿: 

𝑅𝑎 = −
1

𝛥
(
𝑑𝛷+
𝑑𝑦

+ 𝑖𝑘(𝛽̃ − 𝛽)𝛷+)|
0

(
𝑑𝛷−
𝑑𝑦

− 𝑖𝑘(𝛽̃ + 𝛽)𝛷−)|
𝐿
+ 

1

𝛥
(
𝑑𝛷+
𝑑𝑦

+ 𝑖𝑘(𝛽̃ − 𝛽)𝛷+)|
𝐿

(
𝑑𝛷−
𝑑𝑦

− 𝑖𝑘(𝛽̃ + 𝛽)𝛷−)|
0
𝑒2𝑖𝛽̃𝑘𝐿 

(A.1) 

and 

𝑇𝑎 =
2𝑖𝑘𝛽

𝛥
(𝛷+

𝑑𝛷−

𝑑𝑦
− 𝛷−

𝑑𝛷+

𝑑𝑦
− 2𝑖𝑘𝛽̃𝛷+𝛷−)|

𝐿
𝑒𝑖(𝛽̃−𝛽)𝑘𝐿. (A.2) 

where the complex parameter 𝛥 is defined as 

𝛥 = (
𝑑𝛷+
𝑑𝑦

+ 𝑖𝑘(𝛽̃ + 𝛽)𝛷+)|
0

(
𝑑𝛷−
𝑑𝑦

− 𝑖𝑘(𝛽̃ + 𝛽)𝛷−)|
𝐿

− 

(
𝑑𝛷+
𝑑𝑦

+ 𝑖𝑘(𝛽̃ − 𝛽)𝛷+)|
𝐿

(
𝑑𝛷−
𝑑𝑦

− 𝑖𝑘(𝛽̃ − 𝛽)𝛷−)|
0

𝑒2𝑖𝛽̃𝑘𝐿. 
(A.3) 

Bloch functions 𝛷±(𝑦) (given by Equations (4) and (5)) 
and their derivatives should be evaluated either at 𝑦 = 0 
or at 𝑦 = 𝐿, depending on the subscription. 

 


