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Abstract
With the rise of data analytics in industrial applications a heterogeneous tool landscape developed over the past few years. To
cope with highly dynamic and domain-specific requirements of such applications, scripting programming languages and
frameworks, which offer ecosystems comprising numerous publicly available plugin libraries, are gaining more and more
attraction as a starting point, since they enable rapid prototyping and thus, quick results. At the other end, cloud service
providers are continuously extending their data analysis product palette in order to support large enterprise solutions for
real-world deployments. As scripted prototypes and cloud based solutions have their strengths in different phases of an
analytics project, we identified several pitfalls in recent case studies when moving a prototypic approach to release. In this
work, we present a software design for a data stream analysis testbed, with the aim to address some of these challenges.
Therefore, an interaction pattern for common analysis steps (data acquisition, visualization, preprocessing and machine
learning model evaluation) is detailed, results gained from a sample case study are summarized and future leads are
discussed.
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1. Introduction

The motivation for this work originates from the re-cently intensively investigated idea of predictive main-tenance (Schmidt and Wang, 2018). Therefore, machinelearning methods are used to generate models, whichdetect and furthermore, predict machinery breakdowns.The model training algorithms use recorded sensor datastreams of monitored machinery, which are catego-rized as being representative for certain system statesby domain experts. To develop accurate and well gener-alizing models, however, usually not the complete rawdata stream can be used. For most applications, faultysystem behavior is very seldom, and hence, underrep-

resented in the recorded data. Therefore, significanteffort has to be put on data preprocessing to extractrepresentative partitions from the variety of states asystem runs through. With a balanced system state dis-play, machine learning algorithms are able to model allshades of a system’s behavior comprehensively, whicheventually enables precise state predictions (Orriolsand Bernadó-Mansilla, 2005). To evaluate a model’saccuracy, built on such training data sets, an equallyengineered test partition, which is restrained from theprevious modeling process, is commonly used. How-ever, there are several differences between evaluatinga model on a test partition and on the raw real-worlddata stream. We have experienced additional challenges
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which revealed at the deployment level in recent real-world data analytics use cases with reference to pre-dictive maintenance and Industry 4.0, we have workedon:

• Data preprocessing: There are several data-linkedchallenges regarding online preprocessing: consoli-dation of data streams from different origins; tem-poral alignment of data streams; standardization ofdata from differently situated systems etc.• Runtime performance: The runtime performance ofdata preprocessing and model evaluation on a con-tinuously updated data stream is crucial, since it hasto be performed and finished in time according tothe stream update frequency. Also accompanyingvisualizations and performance indicators (i. e. de-scriptive statistics), used for decision support, mustbe computable in time.• Model sensitivity vs. specificity: In the context ofa predictive maintenance application, it can be quitedifficult to find a reasonable tradeoff between theconcurring goals “high anomaly detection speed”and “low false positive rate”, and tune the modelsaccordingly.

Tackling such challenges which emerge from an on-line evaluation situation requires to mimic the real-world situation as close and as fast as possible. Be-fore setting up a large-scale data analytics environ-ment (e. g. using commercial cloud service platforms),usually prototypes in form of software scripts are de-veloped, which make use of existing frameworks andpackages. However, with the increasing functionality,necessary to simulate the real-world situation, suchscripts quickly tend to turn into a confusing, slow anderror-prone big ball of mud, which is eventually dis-carded, at latest after a use case is closed. In order toprevent starting from scratch for each similarly situ-ated use case over and over again, we aim to persist ourgained experiences with the creation of a data streambased machine learning testbed. This work depicts thegeneral idea and architecture of the developed testbedand details the role of the participating components.Besides being a booster for upcoming applications, sucha testbed may serve as a demonstration platform, usedfor early-stage discussions regarding possible data an-alytics employments in production industry.
In the subsequent section 2, related approaches arelisted and open issues highlighted. The design of thedeveloped testbed and hence, the main part of thiscontribution, is presented in section 3. Results froma synthetic application scenario are provided in sec-tion 4. The final section 5 briefly summarizes the maincontribution of this work and provides an outlook.

2. Related work and unmet Needs

In the context of Industry 4.0 and more specifically, pre-dictive maintenance, numerous software frameworkshave been proposed in recent scientific work. Li et al.(2017) as well as Schmidt and Wang (2018) presentcloud based frameworks for predictive maintenanceapplications. The authors profoundly elaborate on thechallenges from real-world applications and how theirframeworks are designed to deal with them on a concep-tual level. However, technical implementation details,such as the communication protocol, are not further de-scribed, instead the machine learning methodology forpredictive maintenance is detailed. Several other contri-butions present systems, tailored for a specific cooper-ate partner (e. g. Kanawaday and Sane (2017), Baptistaet al. (2018)). These systems accomplish real-worldproblem solving, but often lack of general applicability.Most importantly however, as they are developed forproduction use cases, they are not easy to deploy andhence, suboptimal to serve as a testbed.
Cloud based machine learning platforms, suchas Microsoft Azure Stream Analytics (https://azure.

microsoft.com/), IBM Watson (https://www.ibm.com/
watson) or RapidMiner (https://rapidminer.com/), shipwith proper solutions for prototyping data stream an-alytics, as they provide ready-to-use infrastructure,eased setup and a broad range of stream mining fea-tures. However, since they are not exclusively dedicatedto Industry 4.0 applications, exactly this richness offeatures may slow down the prototyping process. An-other aspect to consider is that these systems are com-mercial products, such that ordering them solely forbeing a testbed might not justify the costs. Moreover, ifused as a prototyping tool, one might risk an expensivevendor lock-in, right at the start of a project. Theirmain purpose is to provide enterprises a solid platformfor eventual real-world deployments (i. e. productionrelease).

Alternatively, the open source WEKA MOA frame-work (Bifet et al., 2010) does fulfill several needs, withzero costs. It ships with a large tool box for data streammining, it is open for modification, it interoperateswith its parental framework WEKA and it has a growingcommunity. Most importantly, the framework coversnecessary testbed functionality including the genera-tion of synthetic data streams, data preprocessing andmodel training with various machine learning algo-rithms. Nevertheless, from the author’s perspective,the configuration process via graphical user interfaceor command line argument is quite cumbersome, al-though this may be adapted quite easily. The majorunmet need for the envisaged testbed however, is thatMOA is not designed to simulate an industrial condi-tion monitoring setup. The framework is certainly agreat software suite for experimenting with machinelearning modeling and evaluation algorithms, however,does not provide the pursued simulation characteristic.

https://azure.microsoft.com/
https://azure.microsoft.com/
https://www.ibm.com/watson
https://www.ibm.com/watson
https://rapidminer.com/
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Figure 1. General design of the developed MQTT based data stream analytics testbed.

To the best of the authors’ knowledge there is no ded-icated machine learning model evaluation environment,which aims to mimic a real-world situation, while stillmaintaining an easy-to-use testbed character.

3. Design and Functionality

In order to cover the unmet needs, described in the lat-ter section, we propose a software design with focus onthe communication process between the participatingcomponents. The following paragraphs elaborate onthe core ideas behind the implemented software envi-ronment and how they contribute to the aimed datastream evaluation testbed.
3.1. General Architecture

The central role in the design of the developed testbedis taken by an MQ telemetry transport (cf. MQTT) pro-tocol based message broker (Katsikeas et al., 2017), forwhich we used the implementation of Pivotal’s Rab-bitMQ software (https://www.rabbitmq.com/). MQTT isa standardized ligthweight network protocol, whichis used for many IoT applications and widely adoptedby leading cloud service providers (cf. Microsoft Azure,
Amazon Web Services etc.). The MQTT broker routesmessages following the publisher-subscribe pattern:Communication participants produce and direct mes-sages to a listening MQTT broker, using a URL-likestructured topic-string. Other participants may sub-scribe for certain topics or subtopics they are interestedin and want to get updated on. The broker queues thereceived messages, manages the subscriptions and for-

wards messages from the message publishing party tothe message consuming party. Figure 1 illustrates thebasic design and functionality of the developed datastream evaluation testbed from a data transfer perspec-tive. The software can be best described as configura-tion file driven discrete event simulation and consistsof the central MQTT message broker and four com-municating simulation participants (cf. data streamgenerator, visualization, preprocessing, model evalu-ation), which are individual service applications. Al-though the data transfer within such a stream analyticstestbed may be accomplished leaner without separateservices and a central message broker – e. g. by us-ing peer to peer data transfer between applications,or by implementing the complete functionality withina single application – we opted for this MQTT basedapproach, since the protocol already deals with manyreal-world data transfer problems (e. g. expandability,scalability, reliability, security etc.) and hence, becameone of the most important protocols for Industry 4.0applications.
As a second core design idea, we decided to useconfiguration files to initialize the simulation. There-fore, all necessary parameters (e. g. topic subscrip-tions) of a simulation participant are parsed at startupfrom a toml file (cf. tom’s obvious minimal language;

https://github.com/toml-lang/toml). The very concisetoml syntax basically consists of <key>=<value> pairs,but also allows more complex data structures. For thesake of simplicity, uniformity and minimal transmis-sion overhead, we used this format also for the messagepayload.

https://www.rabbitmq.com/
https://github.com/toml-lang/toml
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3.2. Simulation Participants

A sample message flow between the four simulationparticipating components, is annotated in Figure 1 atthe connecting arrows and reads as follows (clockwise):The data stream generator parses configuration files, inwhich several time series are mathematically definedand meta-information, such as topic and frequency forpublication are determined. The generator starts to cal-culate the time series and continuously publishes eachnew generated data point independently (cf. first-level-topic raw). Depending on the generators configuration,data streams from a single machinery or a completeproduction plant may be simulated. Furthermore, thegenerator can be configured to produce data with drift-ing concept, in order to simulate gradually increasingwear and tear of machinery and hence, simulate samplepredictive maintenance use case data. Besides stream-ing data points, the generator may also be used toproduce complete data sets for the purpose of modeltraining during an “offline” phase.
The subscribed preprocessing service applicationreads the data and performs several modificationsteps (filter outliers, feature aggregation, consolidatestreams etc.), which are defined in the respective con-figuration file. The preprocessed data is subsequentlypublished under a new first-level-topic (cf. prep).
The visualization component subscribes to both, rawand preprocessed data streams, aligns them and de-picts the time series in an interactive chart for furtheranalysis (Figure 2). Same as the data stream generator,parts of the web application for stream visualizationoriginate from previous work (Zenisek et al., 2018) andhave been enhanced for this testbed.
Finally, the model evaluation application reads fromthe preprocessed data stream and continuously feedspreviously trained machine learning models with dataupdates. The classification result is published to an-other MQTT topic (cf. est) for further interpretation.Eventually, this information may be used by a decisionsupport system at the stream-producing machineryor production plant, where it triggers maintenance ac-tions. For model training and evaluation we used theopen source framework HeuristicLab (Wagner et al.,2014), since it provides a broad range of machine learn-ing algorithms and it is easy to extend and include, dueto its plugin infrastructure.

4. Case Study
For a first test implementation of the presented frame-work, we re-purposed the methodological approachand the synthetic problem from Zenisek et al. (2019):This work presents a machine learning based algorithm,which utilizes continuously updated variable interac-tion networks (VIN) to detect changing behavior ina technical system, which might give indication fornecessary maintenance actions. Therefore, time se-

Figure 2. Visualization of the raw (blue) and the overlaid preprocessed(green) sensor time series. Note the smoother, filtered characteristicsof the preprocessed signal.

ries from a synthetic system of communicating vesselsare generated. To create a realistic system drift, i. e. apotential maintenance scenario, a gradually cloggingcommunication channel is simulated and reflected bythe data. Although the evaluation of the generated timeseries is performed based on a sliding window, each ofthe necessary data stream processing steps – i. e. dataacquisition (read next data records from file), prepro-cessing, machine learning model evaluation (= creationof new VIN), VIN based concept drift detection – areperformed time-serially in the original work, using asingle process.

4.1. Architecture Adoption

In order to adopt the software design, presented insection 3, for the described test problem, the afore-mentioned steps have been split up as follows: Whilein the original implementation, data processing stepswere triggered by simply reading one record after an-other from a previously compiled test data set, the dataacquisition part is now covered by the Data Stream Gen-erator component. It produces time series data pointsaccording to calculation rules in the provided toml-files and hence, simulates the sensor signals online.For each of the defined signals an individual MQTTtopic is used to publish data updates with a fixed in-terval of one second. In the basic version four timeseries are simulated to describe the system of commu-nicating vessels and its controlled run from a healthyto an erroneous condition state. The generation processincludes normally distributed signal noise and shockterms, making the signal simulation non-deterministicand thus, more realistic. Furthermore, we enhancedthe existing web application with an additional, inter-active graph visualization, which is depicted in Figure 3.Besides application-specific data preparation (here: ba-sic outlier filtering, signal smoothing using a movingaverage), the main task of the preprocessor componentis to consolidate the data streams (i. e. signals) to beable to forward one data package to the evaluator. Thissubsequent component reads the preprocessed datapackage and performs the evaluation of previously (i. e.
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Figure 3. Visualization of variable interactions as acyclic directedgraph from the web application simulation participant. Nodes repre-sent variables, edges represent the variables’ impacts on others. Theleft network represents the initial system state, the right networkshows the system during an ongoing concept drift (green = new edge,yellow = impact change, values in parenthesis = initial impact value).
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Figure 4. Data transmission and processing time of simulation com-ponents, gained from experiments with increasing signal count.

offline) trained machine learning regression modelsto calculate the alternating variable impacts and thus,the creation of a VIN. Subsequently, the evaluator com-putes a (mathematical) comparison of the initial andupdated graph structures (cf. Figure 3). Eventually,the resulting comparison value is evaluated against apre-defined threshold, which enables the targeted con-cept drift detection. For more information regardingmethodological and test problem details, the reader isreferred to Zenisek et al. (2019).

4.2. Performance Results and Discussion

The results regarding detection accuracy equalled thosegathered in the original study, i. e. the implementa-tion was successful. However, in order to dig deeperand show the added value and potential of using thepresented architecture, we conducted a series of ex-periments with the test problem and evaluated theruntime performance as summarized Figure 4. All testruns have been performed on a standard desktop work-station with an Intel Core i7-6600U CPU 2.60 GHz(2 physical cores with hyperthreading enabled), 16 GB2133 MHz RAM. In order to challenge the computationalresources we increased the problem size gradually byadding more signals to transfer and process. Each ofthe simulation participants described above is startedas an individual process on the same workstation. Par-

allelization options (e.g. preprocessing of data streamsin parallel) have been disabled. The processing timesare calculated as follows:
• raw = average transmission time of one signal updatefrom data stream generator to preprocessor compo-nent; the time to synthesize a new data point is notincluded, since in a real-world situation, this repre-sents the physical measuring process and is withoutthe scope and influence of data analytics.• prep = time to consolidate an update of all signals,preprocess and transmit them to the evaluator com-ponent• est = time evaluate the machine learning models,interpret the computed VIN-comparison value andtransmit the result to a subsequent component.

While the transmission time of raw-packages re-mains quite stable regardless of the amount, the prep-package time grows almost linear with increasing sig-nal count. Hence, the simulated package traffic canbe easily handled by the MQTT broker, without sig-nificant deviations. Since the preprocessor performsonly, two minor time series modifications (cf. basicoutlier filtering and signal smoothing), with almostno measurable runtime effort, we identified the signalconsolidation task as main cause for the time increase.Also the est-package time increases along with the sig-nal count, however much slower, since the evaluatedmachine learning models are of minor complexity anddo not employ all available variables. In this syntheticproblem, data acquisition is a bottleneck: Since thevariables of the simulated system are closely interde-pendent, new data points are sampled in a particular,fixed order and thus, the generation process can notbe parallelized, without changing the system behavior.However, also in real-world applications, sensor mea-surements from a single system are usually performedand published serially, due to hardware limitationsof the connected microcontroller and minor softwarecomplexity. Regardless of the data source and a serialor parallel publication, the consolidation of data up-dates the actual bottleneck of this architecture, sincea central data collection for the subsequent evaluationcomponent is necessary. Facing the measured times,however, one can clearly observe that all of the exem-plary package roundtrips (max. ca. 60ms) are easilyfinished within the defined update interval of 1000 mil-liseconds. As real-world applications may comprise farmore signals to handle, alternative strategies may benecessary to pool data:
• use more powerful hardware for components withpotential bottlenecks• perform interval based consolidation and fill missingupdates with past values• pre-aggregate signal values at the machinery micro-controller• reduce measuring frequency
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The goal of this first setup, was to demonstrate ba-sic behavior and show potential performance bottle-necks of the presented architecture. However, furthertests may include larger setups, similar to possiblereal-world deployments. Therefore, service scaling(e. g. multiple MQTT broker nodes or multiple evalu-ation components) and service distribution (e. g. onecompute resource for each service) are easy to realizewith our design, since only the service addresses mustbe modified. Another advantage of our approach, re-lies in its plugin simulation character: For instance,visualization – as non-essential component – maybe switched on/off without interfering the main datastream analysis process. Furthermore, additional sim-ulation participants, such as a decision support sys-tem, can be easily appended. This perfectly facilitatesthe aimed iterative-incremental development process(cf. strength of scripting approaches) and mimics afeasible real-world deployment (cf. strength of cloudsolutions).

5. Conclusion and Outlook
In order to deal with challenges regarding data streamanalytics, motivated by, but not restricted to predictivemaintenance applications, we presented a software ar-chitecture for a simulation environment on the base ofthe MQTT protocol and toml configuration files. Thegoal and main contribution of this work was not to pro-vide a full-fledged stream mining tool box, rather thanpresenting a sound, yet simple software design for adata stream evaluation testbed for the purpose of proto-typing, considering real-world deployment challenges.Future work might enhance the presented approach bydealing with the following points:
• Adopt additional machine learning frameworks inorder to support their models (e. g. WEKA *.model-files) for evaluation.• Perform comprehensive applicability tests with real-world case studies• Extend the testbed towards online and continuousmodel training
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