Optimization approaches to manage congestions for the phenomenon “Luci d’artista” in Salerno"

  • Luigi Rarità 
  • Dipartimento di Scienze Aziendali - Management & Innovation Systems, and Dipartimento di Ingegneria 
    Industriale, Via Giovanni Paolo II, 132, Fisciano (SA), 84084, Italy
Cite as
Rarità L. (2020). Optimization approaches to manage congestions for the phenomenon “Luci d’artista” in Salerno". Proceedings of the 32nd European Modeling & Simulation Symposium (EMSS 2020), pp. 319-324. DOI: https://doi.org/10.46354/i3m.2020.emss.046

Abstract

This paper focuses on the optimization of traffic flows in case of congestion phenomena due to the event “Luci D’Artista” in Salerno, Italy. The management of traffic deals with two different optimization techniques, that foresee, respectively, a decentralized approach and a genetic algorithm. A cost functional, that estimates the kinetic energy on a portion of the real network of Salerno, is maximized with respect to the distribution coefficients at nodes. The simulation results confirm the decongestion effects, that are also proved via the estimation of the time a car needs to cross fixed paths on the network object of study.

References

  1. Barrios, D., Malumbres, L., and Ríos, J. (1998). Convergence conditions of genetic algorithms. Int. J. Computer Math., 68(3-4):231–241.
  2. Berthiau, G. and Siarry, P. (2001). Etat de l’art des methodes d’"optimisation globale". RAIRO - Oper. Res., 35(3):329–365.
  3. Blandin, S., Bretti, G., Cutolo, A., and Piccoli, B. (2009). Numerical simulations of traffic data via fluid dynamic approach. Appl. Math. Comput., 210(2):441–454.
  4. Cascone, A., D’Apice, C., Piccoli, B., and Rarità, L. (2007). Optimization of traffic on road networks. Math. Models Methods Appl. Sci., 17(10):329–365.
  5. Cascone, A., D’Apice, C., Piccoli, B., and Rarità, L. (2008). Circulation of car traffic in congested urban areas. Commun. Math. Sci., 6(3):765–784.
  6. Cerf, R. (1998). Asymptotic convergence of genetic algorithms. Advances Appl. Prob., 30(2):521–550.
  7. D’Apice, C., Kogut, P. I., and Manzo, R. (2014). On relaxation of state constrained optimal control problem for a PDE-ODE model of supply chains. Netw.Heterog. Media, 9(3):501–518.
  8. D’Apice, C., Kogut, P. I., and Manzo, R. (2016). On Optimization of a Highly Re-Entrant Production System. Netw. Heterog. Media, 11(3):415–445.
  9. D’Apice, C., Manzo, R., and Piccoli, B. (2012). Optimal input flows for a PDE-ODE model of supply chains. Commun. Math. Sci., 10(36):1226–1240.
  10. D’Apice, C., Manzo, R., and Piccoli, B. (2013). Numerical schemes for the optimal input flow of a supply-chain. Siam J. Numer. Anal., 51(5):2634–2650.
  11. Garavello, M. and Piccoli, B. (2006). Traffic Flow on Networks. American Institute of  Mathematical Sciences.
  12. Godunov, S. K. (1959). A finite difference method for the numerical computation of discontinous solutions of the equatons of fluid dynamics. Mat. Sb., 47:271–290.
  13. Kar, A. K. (2016). Bio inspired computing - A review of algorithms and scope of applications. Expert Sys. Applic., 59:20–32.
  14. Kogut, P. I., Manzo, R., and Putchenko, A. O. (2016). On Approximate Solutions to the Neumann Elliptic Boundary Value Problem with non Linearity of Exponential Type. Bound. Value Probl., 2016(208):1–32.
  15. Kupenko, O. P. and Manzo, R. (2013). On an Optimal L 1-Control Problem in Coefficients for Linear Elliptic Variational Inequality. Abstr. Appl. Anal., 2013:13 pp.
  16. Kupenko, O. P. and Manzo, R. (2016). Approximation of an Optimal Control Problem in the Coefficient for Variational Inequality with Anisotropic p-Laplacian. NODEA - Nonlinear Diff., 23(3), Article 35:18.
  17. Kupenko, O. P. and Manzo, R. (2018). On Optimal Controls in Coefficients for Ill-Posed Non-Linear Elliptic Dirichlet Bounday Value Problems. Discrete Cont. Dyn-B, 23(4):1363–1393.
  18. Manzo, R. (2019). On Nuemann Boundary Control Problem for Ill-Posed Strongly Nonlinear  Elliptic Equation with p-Laplace Operator and L 1-Type of Nonlinearity. Ric. di Mat., 68(2):769–802.
  19. Manzo, R. (2020). On Tikhonov regularization of optimal Neumann boundary control problem for an ill-posed strongly nonlinear elliptic equation with an exponential type of non-linearity. Differ. Integral Equ., 33(3-4):139–162.
  20. Michalewicz, Z. and Janikow, C. Z. (1991). Genetic algorithms for numerical optimization. Stat. Comp., 1(2):75–91.
  21. Tomasiello, S. (2011a). A note on three numerical procedures to solve Volterra integro-differential equations in structural analysis. Comput. Math. Appl., 62(8):3183–3193.
  22. Tomasiello, S. (2011b). DQ based methods: Theory and application to engineering and physical sciences. Handbook of Research on Computational Science and Engineering: Theory and  Practice, U:316–346.
  23. Tomasiello, S. (2012). Some remarks on a new DQ-based method for solving a class of Volterra
    integro-differential equations. Appl. Math. Comput., 219(1):399–407.