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Abstract

This paper focuses on the optimization of traffic flows in case of congestion phenomena due to the event “Luci D’Artista” in
Salerno, Italy. The management of traffic deals with two different optimization techniques, that foresee, respectively, a
decentralized approach and a genetic algorithm. A cost functional, that estimates the kinetic energy on a portion of the real
network of Salerno, is maximized with respect to the distribution coefficients at nodes. The simulation results confirm the
decongestion effects, that are also proved via the estimation of the time a car needs to cross fixed paths on the network object

of study.
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1. Introduction

In modern cities, problems connected to vehicles con-
gestions represent a hard task, that challenges in find-
ing suitable control approaches. Possible solutions con-
sider the adoption of more lanes and the construction of
crossings, a situation that is not often possible to man-
age due to high costs. Issues of heavy traffic provide
difficulties inside modern areas of big cities, especially
in critical situations of accidents or in occasions of par-
ticular events that involve the population, such as the
phenomenon “Luci D’Artista” in Salerno, Italy. This
last event, during the months of November, December
and January, determines an increase in the tourist flow
in Salerno thanks to various embellishment operations
of the city center via series of lights inside roads and
parks.

In this context, using a fluid dynamic model that
forecasts the traffic density evolution on road networks
(see (Garavello and Piccoli, 2006)), a strategy for the

optimal redistribution of traffic at intersections is pro-
posed. Following the adopted model (for the validation,
see (Blandin et al., 2009)), the car densities on each
road obey a conservation law, while dynamics at road
nodes is uniquely solved by using two principal rules:
the incoming traffic at nodes distributes to outgoing
roads via some distribution coefficients; drivers behave
so that the flux through road intersections is maxi-
mized.

If an intersection J is of 1 x 2 type (one incoming
road and two outgoing ones), the first rule is easily
expressed by a unique distribution parameter «, that
indicates the percentage of cars which, from road 1, go
to road 2. Assigning initial densities for incoming and
outgoing roads and using the second rule, we finally
compute the asymptotic solution as function of «.

Here, assuming the distribution coefficient as con-
trol parameter, we want to optimize the traffic condi-
tions at intersections of 1 x 2 type in order to improve
urban traffic and face congestions due to the event
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“Luci D’Artista” in Salerno. In particular, we analyze
the following issue over a fixed time horizon: maxi-
mizing a cost functional E, that gives an estimate of
the kinetic energy on a portion of the Salerno network.

Different control approaches for the right of way
parameters and distribution coefficients have already
been treated in (Cascone et al., 2007) and (Cascone
et al., 2008), where three cost functionals, dealing with
average velocities, average travelling times, and flux,
are analyzed for 1 x 2 and 2 x 1 intersections. A fur-
ther analysis is in (Manzo et al., 2012), where coeffi-
cients of 2 x 2 road nodes are optimized for the fast
transit of emergency vehicles along assigned paths in
case of accidents. For other interesting optimal control
problems also based on fluid-dynamics models and its
applications to supply chains and arterial systems see
(D’Apice et al., 2012), (D’Apice et al., 2013), (Kupenko
and Manzo, 2013), (D’Apice et al., 2014), (D’Apice et al.,
2016), (Kogut et al., 2016), (Kupenko and Manzo, 2016),
(Kupenko and Manzo, 2018), (Manzo, 2019), (Manzo,
2020).

A complete characterization of the cost functionals E
on a whole network is very complex, so we follow two
different approaches. In the first case, we propose a
decentralized approach, i.e. an exact solution is found
for single 1 x 2 nodes and asymptotic E. The global
(sub)optimal solution for networks is achieved by lo-
calization: the exact optimal solution is applied locally
for each time at each junction of 1 x 2 type. In the sec-
ond case, we consider a procedure based on a genetic
algorithm (GA), whose properties are highly studied in
(Berthiau and Siarry, 2001; Kar, 2016; Michalewicz and
Janikow, 1991). In particular, the maximization of E in-
volves its numerical computations by variations of traf-
fic coefficients via mechanisms of selection, crossover
and mutation.

The optimization results are then proved by simula-
tions (for numerics, see (Godunov, 1959), (Tomasiello,
2011a), (Tomasiello, 2011b), (Tomasiello, 2012)), consid-
ering optimal and random distribution coefficients. The
first ones are provided by the optimization algorithms,
that refer to the two just described approaches. The
second ones consider, at the beginning of the simula-
tion process, random values of «, kept constant during
the simulation.

The proposed case study is a portion of the Salerno
urban network that presents 1 x 2 and 2 x 1 road nodes.
The simulation results present interesting features:
random coefficients frequently cause high congestions,
as expected; optimal distribution coefficients allow a
redistribution of traffic flows. In particular, random
simulation curves of the cost functional E are always
lower than the optimal ones due to the decentralized ap-
proach and to the GA. The optimal case due to the GA is
the highest possible, as the traffic is globally optimized.
Finally, using an algorithm for tracing car trajectories
on a network, some simulations are run to test how

the total travelling time of a driver is influenced by dis-
tribution coefficients. As intuition suggests, the time
useful to cover a path of a single driver decreases when
optimal « values are used.

The benefits of such an analysis are evident: it is
possible, for road managers, to understand the future
areas in which congestion phenomena are higher in
Salerno. Further investigations about car trajectories
could be useful to foresee the decision plans to redirect
traffic flows inside the urban context.

The paper is organized as follows. Section 2 de-
scribes the model for road networks. Section 3 deals
with the optimization techniques for the cost func-
tional E. Simulation results are presented in Section 4.
Conclusions ends the paper in Section 5.

2. A model for traffic dynamics on road net-
works

A road network is described as a couple (A, B), where
A and B are the set of roads [, modeled by intervals
[uks 0] C R, k =1, ..., M, and nodes, respectively.

As for dynamics on roads, assume that, for a generic
road I, k=1,...,M: &, = 8, (t,x) € [0,5'fnax] is the den-
sity of vehicles, where 5X,.x is the maximal density;
f(8,) = dv(8y) is the flux where v (5;) € [o,v’fnax] is
the average velocity with v&,.x highest possible velocity.
Then, the traffic on each road I}, k = 1,..., M, is provided

by the conservation law (Lighthill-Whitham-Richards
model):

o8, f (5)

ot x O )

For each road [, k = 1,...,M, we get the following:
(H) f is a strictly concave C? function such that f (0) =

f (é’l‘nax) = 0. Fixing the decreasing velocity function:

)
V(&) = VIISnax <1 - kik
dmax

) Oy € [0,6’51“] . (2)

a flux function, that respects (H), is, for v,.x = 5Kax = 1:

f(&r) =8 (1-8), & €[0,1], (3)

that has a unique maximum o = 3.

In order to define the dynamics at junctions, we
consider Riemann Problems (RPs), namely Cauchy
Problems with a constant initial datum for each in-
coming and outgoing road. Fix a node J of n x m
type (n incoming roads Ir, r = 1,...,n, and m outgo-
ing roads, I, s = n +1,...,n + m) and an initial datum
80 = (81,0, +++) On,0y On+1,05 +++) On+m,0) -

A Riemann Solver (RS) for J is a map RS : [0,1]" x
[0,1]™ — [0,1]" x [0,1]™ that associates to &, a vec-



tor 5 = (31, cvey 01,0, On+1, _,,,S,Hm) so that the the wave
or = (6r,0,3r) is solution for the incoming road I,

r=1,...,n, and the wave &s = (6;)0,35) is solution for

the outgoing road Is, s = n + 1, ...,n + m. The following
conditions hold: (H1) RS(RS (80)) = RS(50); (H2) for a
generic outgoing (resp. incoming) road, the wave &
(resp. r) has positive (resp. negative) speed.

If m > n, a possible RS at J is described through the
rules:

(A) Traffic distributes at J according to parameters,
that are collected in a traffic matrix A = (as,r),
n+m
r=1,..,n,s=n+1,...,n+m,0< asr <1, > osr=1.
S=n+1
The r-th column of A provides the percentages of
traffic that, from the incoming road Ir, goes to the
outgoing roads;
(B) Fullfilling (A), drivers maximize the flux through
J.

If n > m, a further rule (yielding criterion) is neces-
sary:

(C) If R is the amount of cars that can enter the outgo-
ing roads, then prR cars come from the incoming

n
road Ir, where pr € ]0,1[, 3 pr = 1, indicates the
r=1

right of way parameter for road Ir, r = 1, ..., n.

An example of possible Riemann Solver is described
as follows (for other cases, see (Garavello and Piccoli,
2006)).

For nodes J of 1 x 2 type (incoming road I;, and
outgoing roads I, and I3), indicate the densities of
cars for incoming and outgoing roads, respectively,
by & (t,x) € [0,1], (t,x) € R" x I, and & (t,x) € [0,1],
(t,x) € R* x L5, s = 2,3. From (H2), for the flux func-
tion (3) and initial datum of an RP at ] represented
by 80 = (81,0 52,0, 83,0), we have that the maximal flux
values on roads are:

if 0<dyo<iandu=1,
or 1 <syo<1andu=2,3,

f(éuyo) )

if 2 <&yo<t1andu-=1,
oro < dyo < Zandu=23.

In this case, matrix A has the only coefficients a,; = «,
031 =1—- a1 = 1- «. From rules (A) and (B), we get
that the flux solution to the RP at J is ¥ = (y1,72,73),
where:

max max

o~ s max Y2 Y3

Y1 = min {Yl ) ) } )
o 1-«

Y2 = oy, ¥3=(1- ).
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Once 7 is known, 5 is found as:

ifo<odyo<iandu=1,
or 3 <s&yo<1andu-=2,3,
ifo <6uyo<3,u=2,3,

if 1 <&uo<1u=1,

{du0} U]t (8u0),1],

[0,3],
(3,1],

gue

where T : [0,1] — [0,1] is the map such that f (t(5)) =
f(d)vse[o,1]and t(8) 75V 5 €[0,1]\ {5}

Further details about the adopted model are in (Gar-
avello and Piccoli, 2006).

3. Optimization

Fix a road network (A4, B) as described in previous Sec-
tion. The network performances are optimized by the
following cost functional:

M

M=) [fetoyv@end, @)

k=1 I

that is a term proportional to the kinetic energy on the
whole network.

Assuming bounded & (t,x), k = 1,...,M, the aim is
to maximize E (t) with respect to traffic distribution
parameters at each node J € B. In what follows, we
propose two different approaches.

3.1. First approach

As the solution of the optimization control problem
considers space-time variables, we refer to a heuristic
defined by the following steps:

Step 1 Fix a node J € B of n x m type, the initial datum
(6}1’0, ...,5{,’0,5},“1’0, ...,6{,+m_0> at J, and define
the local cost functional:

n+m

E(t):=) Jf (5{((t,x)) v (5{<(t,x)) dx.

k=1 I

Step 2 For a fixed time horizon [0, T], with T suffi-
ciently big, assume traffic distribution coeffi-
cients and right of way parameters as controls,
and maximize E; (t) with respect to them.

Step 3 Construct the optimal solution of the overall
network by localization, i.e. by using the single
optimization solutions at each node J ¢ B of
n x m type.

Assume that ] € B is of 1 x 2 type. In this case,
the traffic distribution matrix is defined by a unique
parameter « (see the previous section) and, for step 2,
we get the following conditions:

max
ax _ v max max.
<5< <Y

. C15Y§n Y1
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max
R i G €t
. o, Max max max.
) C3 ’ yzmax< ygmax< YI ma;(
LY G i e I
max
. Y .
e N RN
. Yi"ax max max max
+ Cs5: 5— < -Y3 <Yy,
and define:
max
pmax ._ Yi
ij ymax

We have the following:

Theorem 1 Fixanode] € Bisof1x 2 type. Assuming T suf-

ficiently big, the cost functional Ej (t) is maximized for the
following value (x?pt (in some case, the optimal control does

not exist but it is approximated using the small and positive
constant ¢):

1-13™ +¢, ifCissatisfied;

e, if C, holds;
T if C3 and C3, both hold;
32
(x})pt = -, if C3 and Csg are both true;

@ + g, if C34 and C, both hold;
1-r5®¥ —¢, ifCs holds;

1, otherwise.

3.2. Second approach

A possible optimization of (4) can be obtained via a
Genetic Algorithm (GA). Convergence issues of such
algorithms are properly considered in (Barrios et al.,
1998; Cerf, 1998).

For a maximal number of iterations ¥, the algorithm
works as follows.

At the iteration 0, generate an initial population
indicated by C° = (Cf, cs,..., Cg), seen as a set of pos-
sible controls (distribution coefficients and/or right
of way parameters), and compute the value Qo :=
E (Cﬁ’, as,..., Cg) of the fitness function (4).

In general, indicating by Q; := E (C’f, ck, ..., C’f,) the
value of (4) at the iteration k, k > 1, the steps of such
iteration are:

Step 1 starting from CK! = (C’f‘l,C’fl,...,Cﬁ‘l), get
ck = (Ef,?g, e ,CT;,) via mechanisms of selection,
crossover and mutation; - o

Step 2 compute the value O := E (C’f, ck, ..., cl'g) of (4);

Step 3 if Oy < Qy_,, set C€ := Ck and go to step 4; oth-
erwise, go back to step 1;

Step 4 set k := k + 1 and go back to step 1 if k < V;
otherwise, stop.

4. Simulations

In this section the simulation of a part of the urban
network of Salerno, Italy, is presented. The network
topology is represented in Figure 1, and has four prin-
cipal roads, that are divided into segments labelled by
letters. Precisely, we have Via Torrione (segments a,
b, ¢), Via L. Vinciprova (segments d, e), Via S. Mobilio
(segments f, g, h, i), and Via L. Guercio (segment I).

Figure 1. Topology of the portion of the real urban network of Salerno.

We have inner roads segments (b, e, f, g, h), and
external ones (a, ¢, d, i, I). Road nodes are indicated
by numbers and, precisely, 1, 3, and 5 are of 1 x 2
type, while 2 and 4 are of 2 x 1 type. Traffic flows are
simulated by the Godunov method with Ax = 0.0125,
At = 0.5Ax in a time interval [0, T], with T = 150 min.
Initial conditions and boundary data for densities are
in Table 1, and have been estimated by historical series
during the month of December 2019.

Table 1. Initial conditions (IC) and boundary data (BD, normalized in
[0,1]); right of way parameters (RWP).

Road IC BD

0.15 0.35 /
0.15 / 0.15
0.15 0.95 0.25
0.15 0.35 /
0.85 / /
0.15 / 0.75
0.8 / 0.65
0.65 / /
0.8 0.95 /
0.8 0.95 /

RWP

—_——_ a0 an o Q

Notice that, for road intersections 2 and 4, right of
way parameters are chosen according to measures on
the real network.

Precisely, the features of the provided simulations



are as follows:

« Data collection: historical series provided by the mu-
nicipality of Salerno.

« Case study definition (network to simulate): a part of
Salerno network, see Figure 1.

- Implementation: C++ code, where data structures are
useful to store the network graph; Godunov method
for the approximation of conservation laws; ad hoc
functions, realized by the author, for the resolution
of linear programming problems at the nodes of the
network.

« Parameters for simulations: see Table 1.

« Validation: not yet realized within the scenario of
Salerno.

Notice that validation steps have not been done
due to the region Campania’s lockdown for COVID-19
emergency. Future research activities aim at this pur-
pose, though some validation processes are described
in (Blandin et al., 2009) for Rome (Italy).

4.1. Discussion and results

In this subsection, we discuss the obtained results.

In Figure 2, we report the behaviour of E, where
optimal simulations are indicated again by continuous
lines, while random cases by dashed ones. Random
simulations curves of E are always lower than the opti-
mal ones. In fact, when optimal parameters are used, a
flows redistribution occurs on roads, with consequent
reduction of congestions at junctions of 1 x 2 type. No-
tice that the optimal behaviour with GA, labelled by GA,
is higher, as expected, by the optimal curve obtained
through the decentralized approach, labelled by DA.

50

45
40
\\
35 \
= \)
T 30 N
NS GA
25 N
<\\. N DA
Sy St m===============
20 ~N o~ B
- \\\ \\\\ /’1””’—
15 SN
20 40 60 80 100 120 140

t (min)

Figure 2. Evolution in [0, T] of E(t), evaluated for optimal distribution
coefficients (continuous line) and random choices (dashed lines).

Assume that a car travels along a path in a network,
whose traffic dynamics is provided by (1). The position
of the driver x = x (7) is obtained by the Cauchy problem:
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{ X=v(5(5,0), 5)

X(To) = Xo,

where X is the initial position at the initial time 7. Via
suitable numerical methods, described in (Tomasiello,
2011a), (Tomasiello, 2011b) and (Tomasiello, 2012), we
aim to estimate the driver travelling time and to prove
the goodness of the optimization results. Precisely, we
compute the trajectory along road g and the time to
cover it in optimal and random conditions.

In Figure 3, we assume that the car starts its own
travel at the beginning of road g at the initial time
To = 55 and compute the trajectories x(t) in the optimal
case with GA (continuous line) and in random cases
(dashed lines).

// 7 // //
/ / / 7
0.8 ey d
/7 07
s
/ 7 ///
0.6 ‘) S
/ s
= ey
= /S S
0.4 (e
v,
s
7,
7).~
0.2 vz
/é
/4

57 59 61
t (min)

63 65 67

Figure 3. Trajectory x(t) along road g with t, = 55; optimal coefficients
(continuous line) and random choices (dashed lines).

The behaviour x(t) in the optimal case has always
a higher slope than the trajectories in random cases
as traffic levels are low. When random parameters
are considered, shocks propagating backwards increase
the density values on the network. The velocity for
cars is reduced and exit times from road g become
longer. Assuming to = 55 we have the following time
instants T,y in which the car goes out of road g, either
for the optimal distribution coefficients with GA (<o
or random choices (i, 1, i = 1,..,4): 10 = 60.70,
™, = 66.34, T2, = 64.94, Ty, = 62.84 and 1.}, = 61.42.

out out

5. Conclusions

In this paper, an optimization study has been described
in order to manage car traffic in case of the event “Luci
D’Artista” in Salerno, Italy. In particular, suitable dis-
tribution coefficients at road intersections have been
found via a cost functional, that deals with the Kki-
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netic energy for a portion of the real urban network of
Salerno. The obtained optimization results have been
useful to prove that, in some cases, a total decongestion
effect occurs. This is also confirmed by simulations of
cars trajectories on some roads: optimal distribution
parameters allow to reduce the times needed to cover
fixed paths on the network object of study.

Future research activities aim at the following steps:
a validation of the model within the context of traffic
inside Salerno, an activity that was suspended because
of the National Health Emergency due to COVID-19;
definition of new cost functionals for the analysis of
performances of traffic; new swarm intelligence op-
timization algorithms, based on natural dynamics of
ants and bees.
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