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Abstract
This paper focuses on the optimization of traffic flows in case of congestion phenomena due to the event “Luci D’Artista” in
Salerno, Italy. The management of traffic deals with two different optimization techniques, that foresee, respectively, a
decentralized approach and a genetic algorithm. A cost functional, that estimates the kinetic energy on a portion of the real
network of Salerno, is maximized with respect to the distribution coefficients at nodes. The simulation results confirm the
decongestion effects, that are also proved via the estimation of the time a car needs to cross fixed paths on the network object
of study.
Keywords: Conservation laws; Optimization; Genetic algorithms.

1. Introduction

In modern cities, problems connected to vehicles con-gestions represent a hard task, that challenges in find-ing suitable control approaches. Possible solutions con-sider the adoption of more lanes and the construction ofcrossings, a situation that is not often possible to man-age due to high costs. Issues of heavy traffic providedifficulties inside modern areas of big cities, especiallyin critical situations of accidents or in occasions of par-ticular events that involve the population, such as thephenomenon “Luci D’Artista” in Salerno, Italy. Thislast event, during the months of November, Decemberand January, determines an increase in the tourist flowin Salerno thanks to various embellishment operationsof the city center via series of lights inside roads andparks.
In this context, using a fluid dynamic model thatforecasts the traffic density evolution on road networks(see (Garavello and Piccoli, 2006)), a strategy for the

optimal redistribution of traffic at intersections is pro-posed. Following the adopted model (for the validation,see (Blandin et al., 2009)), the car densities on eachroad obey a conservation law, while dynamics at roadnodes is uniquely solved by using two principal rules:the incoming traffic at nodes distributes to outgoingroads via some distribution coefficients; drivers behaveso that the flux through road intersections is maxi-mized.
If an intersection J is of 1 × 2 type (one incomingroad and two outgoing ones), the first rule is easilyexpressed by a unique distribution parameter α, thatindicates the percentage of cars which, from road 1, goto road 2. Assigning initial densities for incoming andoutgoing roads and using the second rule, we finallycompute the asymptotic solution as function of α.
Here, assuming the distribution coefficient as con-trol parameter, we want to optimize the traffic condi-tions at intersections of 1× 2 type in order to improveurban traffic and face congestions due to the event
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“Luci D’Artista” in Salerno. In particular, we analyzethe following issue over a fixed time horizon: maxi-mizing a cost functional E, that gives an estimate ofthe kinetic energy on a portion of the Salerno network.
Different control approaches for the right of wayparameters and distribution coefficients have alreadybeen treated in (Cascone et al., 2007) and (Casconeet al., 2008), where three cost functionals, dealing withaverage velocities, average travelling times, and flux,are analyzed for 1 × 2 and 2 × 1 intersections. A fur-ther analysis is in (Manzo et al., 2012), where coeffi-cients of 2 × 2 road nodes are optimized for the fasttransit of emergency vehicles along assigned paths incase of accidents. For other interesting optimal controlproblems also based on fluid-dynamics models and itsapplications to supply chains and arterial systems see(D’Apice et al., 2012), (D’Apice et al., 2013), (Kupenkoand Manzo, 2013), (D’Apice et al., 2014), (D’Apice et al.,2016), (Kogut et al., 2016), (Kupenko and Manzo, 2016),(Kupenko and Manzo, 2018), (Manzo, 2019), (Manzo,2020).
A complete characterization of the cost functionals Eon a whole network is very complex, so we follow twodifferent approaches. In the first case, we propose adecentralized approach, i.e. an exact solution is foundfor single 1 × 2 nodes and asymptotic E. The global(sub)optimal solution for networks is achieved by lo-calization: the exact optimal solution is applied locallyfor each time at each junction of 1× 2 type. In the sec-ond case, we consider a procedure based on a geneticalgorithm (GA), whose properties are highly studied in(Berthiau and Siarry, 2001; Kar, 2016; Michalewicz andJanikow, 1991). In particular, the maximization of E in-volves its numerical computations by variations of traf-fic coefficients via mechanisms of selection, crossoverand mutation.
The optimization results are then proved by simula-tions (for numerics, see (Godunov, 1959), (Tomasiello,2011a), (Tomasiello, 2011b), (Tomasiello, 2012)), consid-ering optimal and random distribution coefficients. Thefirst ones are provided by the optimization algorithms,that refer to the two just described approaches. Thesecond ones consider, at the beginning of the simula-tion process, random values of α, kept constant duringthe simulation.
The proposed case study is a portion of the Salernourban network that presents 1× 2 and 2× 1 road nodes.The simulation results present interesting features:random coefficients frequently cause high congestions,as expected; optimal distribution coefficients allow aredistribution of traffic flows. In particular, randomsimulation curves of the cost functional E are alwayslower than the optimal ones due to the decentralized ap-proach and to the GA. The optimal case due to the GA isthe highest possible, as the traffic is globally optimized.Finally, using an algorithm for tracing car trajectorieson a network, some simulations are run to test how

the total travelling time of a driver is influenced by dis-tribution coefficients. As intuition suggests, the timeuseful to cover a path of a single driver decreases whenoptimal α values are used.
The benefits of such an analysis are evident: it ispossible, for road managers, to understand the futureareas in which congestion phenomena are higher inSalerno. Further investigations about car trajectoriescould be useful to foresee the decision plans to redirecttraffic flows inside the urban context.
The paper is organized as follows. Section 2 de-scribes the model for road networks. Section 3 dealswith the optimization techniques for the cost func-tional E. Simulation results are presented in Section 4.Conclusions ends the paper in Section 5.

2. A model for traffic dynamics on road net-
works

A road network is described as a couple (A,B), where
A and B are the set of roads Ik, modeled by intervals[
µk, θk] ⊂ R, k = 1, ...,M, and nodes, respectively.

As for dynamics on roads, assume that, for a generic
road Ik, k = 1, ...,M: δk = δk (t, x) ∈ [0, δkmax

] is the den-
sity of vehicles, where δkmax is the maximal density;
f (δk) = δkv (δk) is the flux where v (δk) ∈

[0, vkmax
] is

the average velocity with vkmax highest possible velocity.Then, the traffic on each road Ik, k = 1, ...,M, is providedby the conservation law (Lighthill-Whitham-Richardsmodel):
∂δk
∂t + ∂f (δk)

∂x = 0. (1)
For each road Ik, k = 1, ...,M, we get the following:(H) f is a strictly concave C2 function such that f (0) =
f
(
δkmax

) = 0. Fixing the decreasing velocity function:

v (δk) = vkmax
(

1 – δk
δkmax

)
, δk ∈

[0, δkmax
] , (2)

a flux function, that respects (H), is, for vkmax = δkmax = 1:
f (δk) = δk (1 – δk) , δk ∈ [0, 1] , (3)

that has a unique maximum σ = 12 .
In order to define the dynamics at junctions, weconsider Riemann Problems (RPs), namely CauchyProblems with a constant initial datum for each in-coming and outgoing road. Fix a node J of n × mtype (n incoming roads Ir, r = 1, ...,n, and m outgo-ing roads, Is, s = n + 1, ...,n +m) and an initial datum

δ0 = (δ1,0, ..., δn,0, δn+1,0, ..., δn+m,0).A Riemann Solver (RS) for J is a map RS : [0, 1]n ×[0, 1]m → [0, 1]n × [0, 1]m that associates to δ0 a vec-
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tor δ̂ = (δ̂1, ..., δ̂n,0, δ̂n+1, ..., δ̂n+m) so that the the wave
δ̃r = (

δr,0, δ̂r) is solution for the incoming road Ir,
r = 1, ...,n, and the wave δ̃s = (δs,0, δ̂s) is solution for
the outgoing road Is, s = n + 1, ...,n +m. The followingconditions hold: (H1) RS (RS (δ0)) = RS (δ0) ; (H2) for ageneric outgoing (resp. incoming) road, the wave δ̃s(resp. δ̃r) has positive (resp. negative) speed.

If m ≥ n, a possible RS at J is described through therules:
(A) Traffic distributes at J according to parameters,that are collected in a traffic matrix A = (αs,r) ,

r = 1, ...,n, s = n+1, ...,n+m, 0 < αs,r < 1, n+m∑
s=n+1αs,r = 1.

The r–th column of A provides the percentages oftraffic that, from the incoming road Ir, goes to theoutgoing roads;
(B) Fullfilling (A), drivers maximize the flux through

J.
If n > m, a further rule (yielding criterion) is neces-sary:

(C) If R is the amount of cars that can enter the outgo-ing roads, then prR cars come from the incoming
road Ir, where pr ∈ ]0, 1[, n∑

r=1 pr = 1, indicates the
right of way parameter for road Ir, r = 1, ...,n.

An example of possible Riemann Solver is describedas follows (for other cases, see (Garavello and Piccoli,2006)).
For nodes J of 1 × 2 type (incoming road I1, andoutgoing roads I2 and I3), indicate the densities ofcars for incoming and outgoing roads, respectively,by δ1 (t, x) ∈ [0, 1], (t, x) ∈ R+ × I1, and δs (t, x) ∈ [0, 1],(t, x) ∈ R+ × Is, s = 2, 3. From (H2), for the flux func-tion (3) and initial datum of an RP at J representedby δ0 = (δ1,0, δ2,0, δ3,0), we have that the maximal fluxvalues on roads are:

γmax
u =


f (δu,0) , if 0 ≤ δu,0 ≤ 12 and u = 1,

or 12 ≤ δu,0 ≤ 1 and u = 2, 3,
f
( 12

) , if 12 ≤ δu,0 ≤ 1 and u = 1,
or 0 ≤ δu,0 ≤ 12 and u = 2, 3.

In this case, matrix A has the only coefficients α2,1 = α,
α3,1 = 1 – α2,1 = 1 – α. From rules (A) and (B), we getthat the flux solution to the RP at J is γ̂ = (γ̂1, γ̂2, γ̂3),where:

γ̂1 = min
{
γmax1 , γmax2

α
, γmax31 – α

}
,

γ̂2 = αγ̂1, γ̂3 = (1 – α) γ̂1.

Once γ̂ is known, δ̂ is found as:

δ̂u ∈


{
δu,0

}
∪

]
τ (δu,0) , 1] , if 0 ≤ δu,0 ≤ 12 and u = 1,

or 12 ≤ δu,0 ≤ 1 and u = 2, 3,[0, 12
] , if 0 ≤ δu,0 ≤ 12 , u = 2, 3,[ 12 , 1] , if 12 ≤ δu,0 ≤ 1, u = 1,

where τ : [0, 1] → [0, 1] is the map such that f (τ (δ)) =
f (δ) ∀ δ ∈ [0, 1] and τ (δ) 6= δ ∀ δ ∈ [0, 1] \ { 12

}.
Further details about the adopted model are in (Gar-avello and Piccoli, 2006).

3. Optimization

Fix a road network (A,B) as described in previous Sec-tion. The network performances are optimized by thefollowing cost functional:

E (t) := M∑
k=1

∫
Ik

f (δk (t, x)) v (δk (t, x))dx, (4)

that is a term proportional to the kinetic energy on thewhole network.
Assuming bounded δk (t, x), k = 1, ...,M, the aim isto maximize E (t) with respect to traffic distributionparameters at each node J ∈ B. In what follows, wepropose two different approaches.

3.1. First approach

As the solution of the optimization control problemconsiders space-time variables, we refer to a heuristicdefined by the following steps:
Step 1 Fix a node J ∈ B of n×m type, the initial datum(

δJ1,0, ..., δJn,0, δJn+1,0, ..., δJn+m,0
) at J, and define

the local cost functional:
EJ (t) := n+m∑

k=1

∫
Ik

f
(
δJk (t, x)) v(δJk (t, x))dx.

Step 2 For a fixed time horizon [0,T], with T suffi-ciently big, assume traffic distribution coeffi-cients and right of way parameters as controls,and maximize EJ (t) with respect to them.Step 3 Construct the optimal solution of the overallnetwork by localization, i.e. by using the singleoptimization solutions at each node J ∈ B of
n×m type.

Assume that J ∈ B is of 1 × 2 type. In this case,the traffic distribution matrix is defined by a uniqueparameter α (see the previous section) and, for step 2,we get the following conditions:
• C1 : γmax3 ≤ γmax12 < γmax1 ≤ γmax2 ;
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• C2 : γmax2 < γmax12 < γmax1 ≤ γmax3 ;• C3 : γmax2 < γmax3 < γmax1 ;• C3A : γmax1 – γmax3 ≥ γmax2 ;
• C3B : γmax1 – γmax3 < γmax2 ≤ γmax12 ;• C4 : γmax3 < γmax2 < γmax1 ;
• C5 : γmax12 ≤ γmax1 – γmax3 < γmax2 ,

and define:
rmax
ij := γmax

i
γmax
j

.

We have the following:
Theorem 1 Fix a node J ∈B is of 1×2 type. Assuming T suf-
ficiently big, the cost functional EJ (t) is maximized for the
following value αoptJ (in some case, the optimal control does
not exist but it is approximated using the small and positive
constant ε):

α
opt
J =



1 – rmax31 + ε, if C1 is satisfied;
rmax21 , if C2 holds;11+rmax32 , if C3 and C3A both hold;
rmax21 – ε, if C3 and C3B are both true;11+rmax32 + ε, if C3A and C4 both hold;
1 – rmax31 – ε, if C5 holds;12 , otherwise.

3.2. Second approach

A possible optimization of (4) can be obtained via aGenetic Algorithm (GA). Convergence issues of suchalgorithms are properly considered in (Barrios et al.,1998; Cerf, 1998).
For a maximal number of iterations Ψ, the algorithmworks as follows.
At the iteration 0, generate an initial population

indicated by C0 = (C01 ,C02, . . . ,C0
P
), seen as a set of pos-

sible controls (distribution coefficients and/or rightof way parameters), and compute the value Ω0 :=
E
(
C01 ,C02, . . . ,C0

P
) of the fitness function (4).

In general, indicating by Ωk := E(Ck1 ,Ck2, . . . ,CkP
) the

value of (4) at the iteration k, k ≥ 1, the steps of suchiteration are:
Step 1 starting from Ck–1 = (

Ck–11 ,Ck–12 , . . . ,Ck–1
P
), get

Ck = (Ck1 ,Ck2, . . . ,CkP
) via mechanisms of selection,

crossover and mutation;
Step 2 compute the valueΩk := E(Ck1 ,Ck2, . . . ,CkP

) of (4);
Step 3 if Ωk < Ωk–1, set Ck := Ck and go to step 4; oth-erwise, go back to step 1;
Step 4 set k := k + 1 and go back to step 1 if k ≤ Ψ;otherwise, stop.

4. Simulations

In this section the simulation of a part of the urbannetwork of Salerno, Italy, is presented. The networktopology is represented in Figure 1, and has four prin-cipal roads, that are divided into segments labelled byletters. Precisely, we have Via Torrione (segments a,
b, c), Via L. Vinciprova (segments d, e), Via S. Mobilio(segments f, g, h, i), and Via L. Guercio (segment l).
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l

1

2

3

4

5

Figure 1. Topology of the portion of the real urban network of Salerno.

We have inner roads segments (b, e, f, g, h), andexternal ones (a, c, d, i, l). Road nodes are indicatedby numbers and, precisely, 1, 3, and 5 are of 1 × 2type, while 2 and 4 are of 2× 1 type. Traffic flows aresimulated by the Godunov method with ∆x = 0.0125,
∆t = 0.5∆x in a time interval [0,T], with T = 150 min.Initial conditions and boundary data for densities arein Table 1, and have been estimated by historical seriesduring the month of December 2019.
Table 1. Initial conditions (IC) and boundary data (BD, normalized in
[0, 1]); right of way parameters (RWP).

Road IC BD RWP
a 0.15 0.35 /
b 0.15 / 0.15
c 0.15 0.95 0.25
d 0.15 0.35 /
e 0.85 / /
f 0.15 / 0.75
g 0.8 / 0.65
h 0.65 / /
i 0.8 0.95 /
l 0.8 0.95 /

Notice that, for road intersections 2 and 4, right ofway parameters are chosen according to measures onthe real network.
Precisely, the features of the provided simulations
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are as follows:
• Data collection: historical series provided by the mu-nicipality of Salerno.• Case study definition (network to simulate): a part ofSalerno network, see Figure 1.• Implementation: C++ code, where data structures areuseful to store the network graph; Godunov methodfor the approximation of conservation laws; ad hocfunctions, realized by the author, for the resolutionof linear programming problems at the nodes of thenetwork.• Parameters for simulations: see Table 1.• Validation: not yet realized within the scenario ofSalerno.

Notice that validation steps have not been donedue to the region Campania’s lockdown for COVID-19emergency. Future research activities aim at this pur-pose, though some validation processes are describedin (Blandin et al., 2009) for Rome (Italy).
4.1. Discussion and results

In this subsection, we discuss the obtained results.
In Figure 2, we report the behaviour of E, whereoptimal simulations are indicated again by continuouslines, while random cases by dashed ones. Randomsimulations curves of E are always lower than the opti-mal ones. In fact, when optimal parameters are used, aflows redistribution occurs on roads, with consequentreduction of congestions at junctions of 1× 2 type. No-tice that the optimal behaviour with GA, labelled by GA,is higher, as expected, by the optimal curve obtainedthrough the decentralized approach, labelled by DA.
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Figure 2. Evolution in [0, T] of E(t), evaluated for optimal distributioncoefficients (continuous line) and random choices (dashed lines).

Assume that a car travels along a path in a network,whose traffic dynamics is provided by (1). The positionof the driver x = x (τ) is obtained by the Cauchy problem:

{ ·
x = v (δ (τ, x)) ,
x (τ0) = x0, (5)

where x0 is the initial position at the initial time τ0. Viasuitable numerical methods, described in (Tomasiello,2011a), (Tomasiello, 2011b) and (Tomasiello, 2012), weaim to estimate the driver travelling time and to provethe goodness of the optimization results. Precisely, wecompute the trajectory along road g and the time tocover it in optimal and random conditions.
In Figure 3, we assume that the car starts its owntravel at the beginning of road g at the initial time

τ0 = 55 and compute the trajectories x(τ) in the optimalcase with GA (continuous line) and in random cases(dashed lines).

t HminL
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Figure 3. Trajectory x(τ) along road gwith t0 = 55; optimal coefficients(continuous line) and random choices (dashed lines).

The behaviour x(τ) in the optimal case has alwaysa higher slope than the trajectories in random casesas traffic levels are low. When random parametersare considered, shocks propagating backwards increasethe density values on the network. The velocity forcars is reduced and exit times from road g becomelonger. Assuming τ0 = 55 we have the following timeinstants τout in which the car goes out of road g, either
for the optimal distribution coefficients with GA (τoptout)or random choices (τriout, ri, i = 1, .., 4): τoptout = 60.70,
τr1out = 66.34, τr2out = 64.94, τr3out = 62.84 and τr4out = 61.42.

5. Conclusions

In this paper, an optimization study has been describedin order to manage car traffic in case of the event “LuciD’Artista” in Salerno, Italy. In particular, suitable dis-tribution coefficients at road intersections have beenfound via a cost functional, that deals with the ki-
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netic energy for a portion of the real urban network ofSalerno. The obtained optimization results have beenuseful to prove that, in some cases, a total decongestioneffect occurs. This is also confirmed by simulations ofcars trajectories on some roads: optimal distributionparameters allow to reduce the times needed to coverfixed paths on the network object of study.
Future research activities aim at the following steps:a validation of the model within the context of trafficinside Salerno, an activity that was suspended becauseof the National Health Emergency due to COVID-19;definition of new cost functionals for the analysis ofperformances of traffic; new swarm intelligence op-timization algorithms, based on natural dynamics ofants and bees.
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