Converging optical-to-MMW wireless links in fiber-wireless access network of 5G communication system

  • Mikhail E. Belkin ,
  • Dmitriy Fofanov ,
  • Aleksei Alyoshin 
  • a,b,c MIREA – Russian Technological University, Vernadsky av. 78, Moscow, 119454, Russia 
Cite as
Belkin M.E., Fofanov D., Alyoshin A. (2020). Converging optical-to-MMW wireless links in fiber-wireless access network of 5G communication system. Proceedings of the 32nd European Modeling & Simulation Symposium (EMSS 2020), pp. 325-329. DOI: https://doi.org/10.46354/i3m.2020.emss.047

Abstract

This paper reviews the principles and ways to advanced design of an access network with millimeter-wave wireless distribution using Radio-over-Fiber approach. To validate the concept, the results of simulating experiment on transmission of 16-, 64-, 256-, and 1024-position quadrature amplitude modulated RF signals at 15 or 40 GHz through optical distribution network are demonstrated and discussed. It is shown that due to fiber dispersion the standard error vector magnitude limit is achieved when the maximum length of the fiber-optic link is more than 4 times shorter at 40 GHz compared to the transmission at 15 GHz.

References

  1. Al-Raweshidy, S. et al. (2002). Radio over Fiber Technologies for Mobile Communications
    Networks. Artech House, p. 436. 
  2. Andrews, J. G. et al. (2014). What Will 5G Be? IEEE Journal on Selected Areas in Communications, Volume 32, Issue 6; pp. 1065–1082.
  3. Bakhvalova, T. N. et al. (2019). Correcting the Chromatic Dispersion of a Fronthaul Fiber Link in
    Millimeter-Wave Radio-over-Fiber Networks. 27th Telecommunications Forum (TELFOR2019).
  4. Belkin, M. E. et al. (2019a). Design Principles of 5G NR RoF-Based Fiber-Wireless Access Network. Chapter to IntechOpen Book “Recent Trends in Communication Networks”.
    https://www.intechopen.com/online-first/designprinciples-of-5g-nr-rof-based-fiber-wirelessaccess-network
  5. Belkin, M. E. et al. (2019b). Studying an Optimal Approach to Distribute Signals through FiberWireless Fronthaul Network. COMCAS-2019.
  6. Boccardi, F. et al. (2014). Five Disruptive Technology Directions for 5G. IEEE Communications Magazine, Volume 52, pp. 74-80.
  7. Chen, S. et al. (2014). The requirements, challenges and technologies for 5G of terrestrial mobile telecommunication. IEEE Commun. Mag., Volume 52, Issue 5, pp. 36–43.
  8. Dat, P. T. et al. (2015). Radio-on-radio-over-fiber: efficient fronthauling for small cells and moving cells. IEEE Wireless Communications, Volume 22, pp. 67–75.
  9. Effenberger, F. (2019). Future Broadband Access Networks. Proceedings of the IEEE, Volume 104, Issue 11, pp. 2078-2081.
  10. ETSI TS 136 104, Evolved Universal Terrestrial Radio Access (E-UTRA). Version 15.3.0 Release 15, ETSI, July 2018, p. 69.
  11. Frenzel, L. (2017). Making 5G Happen. Microwaves & RF, 5 p.
  12. Munn, J. (2016) Our 5G Future: In the Fast Lane with Numerical Simulation. Microwaves & RF, pp. 48-50.
  13. Rappaport, T. S. et al. (2013). Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! IEEE Access, Volume 1, pp. 335-349.
  14. Salvatore, R. A. et al. (2002). Electroabsorption Modulated Laser for Long Transmission Spans.
    IEEE Journal on Quantum Electronics, Volume 38, Issue 5, pp. 464- 476.
  15. World Radiocommunication Conference 2019. Provisional Final Acts, Egypt, 568 pp