Machine learning for optical sensing with grating nanostructures

  • Alexander N. Denisov ,
  • Sergei L. Semjonov
  • a,b Prokhorov General Physics Institute of the Russian Academy of Sciences, Dianov Fiber Optics Research Center, 38 Vavilov Street, Moscow, 119333, Russia
Cite as
Denisov A.N., Semjonov S.S. (2020). Microstructured fibers with high birefringence and a wide spectral range of single-mode guidance. Proceedings of the 32nd European Modeling & Simulation Symposium (EMSS 2020), pp. 336-343. DOI: https://doi.org/10.46354/i3m.2020.emss.049

Abstract

In this study the results of the numerical analysis of a new design of birefringent microstructured fibers (BMSFs) containing three rings of identical air holes around an elliptical core with different distances between the rings of holes are presented. The first ring contains two pairs of holes, which are more widely spaced than others. The BMSFs were characterized using the finite element method. Confinement losses for fundamental and higher-order modes were calculated in the spectral range of 0.20 to 2.65 microns. Simulation results show that an optimum configuration of the proposed design existed, for which the widest spectral range of single-mode guidance of fibers was obtained: from 0.2 to 2.3 microns.

References

  1. Agrawal, G. P. (1995). Nonlinear Fiber Optics. New York: Academic Press.
  2. Bendahmane, A., Krupa, K., Tonello, A., Modotto, D., Sylvestre, T., Couderc, V., Wabnitz, S., and Millot, G. (2018). Seeded intermodal four-wave mixing in a highly multimode fiber. J. Opt. Soc. Am. B, 35:295-301.
  3. Birks, T. A., Knight, J. C., and Russell, P. St. J. (1997). Endlessly single-mode photonic crystal fiber. Opt. Lett., 22:961–3.
  4. Denisov, A. N., Semjonov, S. L., Astapovich, M. S., and Senatorov, A. K. (2015). Highly Birefringent Microstructured Fibers With Low Mode Asymmetry. J. Lightwave Technol., 33:5184–94.
  5. Dong, L., Peng, X., and Li, J. (2007). Leakage channel optical fibers with large effective area. J. Opt. Soc. Am. B, 24:1689–97.
  6. Fini, J. M. (2005). Design of solid and microstructure fibers for suppression of higher-order modes. Opt. Express, 13:3477–90.
  7. Klarskov, P., Isomäki, A., Hansen, K. P., Andersen, P. E. (2011). Supercontinuum generation for coherent anti-Stokes Raman scattering microscopy with photonic crystal fibers. Opt. Express, 19:26672–83.
  8. Lesvigne, C., Couderc, V., Tonello, A., Leproux, P., Barthélémy, A., Lacroix, S., Druon, F., Blandin, P., Hanna, M., and Georges, P. (2007). Visible supercontinuum generation controlled by
    intermodal four-wave mixing in microstructured fiber. Opt. Lett., 32:2173-5.
  9. Mortensen, N. A., Folkenberg, J. R., Nielsen, M. D., and Hansen, K. P. (2003). Modal cutoff and the V parameter in photonic crystal fibers. Opt. Lett., 28:1879–81.
  10. Nielsen, F. D., Pedersen, M. Ø., Qian, Y., Andersen, T. V., Leick, L., Hansen, K. P., Pedersen, C. F.,
    Thomsen, C. L. (2007). High power polarization maintaining supercontinuum source. CLEO/Europe and IQEC 2007 Conference Digest, (Optical Society of America), paper CJ5_4.
  11. Saini, T. S., Kumar, A., and Sinha, R. K. (2016). Asymmetric large-mode-area photonic crystal
    fiber structure with effective single-mode operation: design and analysis. Appl. Opt.,  55:2306–11.
  12. Saitoh, K., and Koshiba, M. (2002). Full-vectorial Imaginary-Distance Beam Propagation Method
    Based on a Finite Element Scheme: Application to Photonic Crystal Fibres. IEEE J. Quantum Electron., 38:927-33.
  13. Saitoh, K., Varshney, S., Sasaki, K., Rosa, L., Pal, M., Paul, M. C., Ghosh, D., Bhadra, S. K., and Koshiba, M. (2011). Limitation on Effective Area of Bent Large-Mode-Area Leakage Channel Fibers. J.  Lightwave Technol., 29:2609-15
  14. Tsuchida, Y., Saitoh, K., and Koshiba, M. (2007). Design of single-moded holey fibers with large--mode-area and low bending losses: The significance of the ring -core region . Opt. Express,15:1794–803.
  15. Wong, W. S., Peng, X., McLaughlin, J. M., and Dong, L. (2005). Breaking the limit of maximum effective area for robust single -mode propagation in optical fibers. Opt. Lett., 30:2855–7.
  16. Xiong, C., and Wadsworth, W. J. (2008). Polarized supercontinuum in birefringent photonic crystal fibre pumped at 1064 nm and application to tuneable visible/UV generation. Opt. Express, 16:2438–45.