Silicon nitride photonic crystal cavity coupled with NV-centers in nanodiamonds

  • Ilia Elmanov ,
  • Anna Elmanova ,
  • Vadim Kovalyuk ,
  • Pavel An,
  • Gregory Goltsman
  • a,b,c,d,e Department of Physics, Moscow State Pedagogical University, 119435, Russia
  • Zavoisky Physical-Technical Institute of the Russian Academy of Sciences, 20029, Russia
  • National Research University Higher School of Economics, Moscow 101000, Russia
Cite as
Elmanov I., Elmanova A., Kovalyuk V., An P., Goltsman G. (2020). Silicon nitride photonic crystal cavity coupled with NV-centers in nanodiamonds. Proceedings of the 32nd European Modeling & Simulation Symposium (EMSS 2020), pp. 344-348. DOI: https://doi.org/10.46354/i3m.2020.emss.050

Abstract

The development of integrated quantum photonics requires a high efficient excitation and coupling of a single photon source with on-chip devices. In this paper, we show our results of modelling for high-Q photonic crystal cavity, optimized for zero phonon line emission of NV-centers in nanodiamonds. Modelling was performed for the silicon nitride platform and obtained a quality factor equals to 6136 at 637 nm wavelength.

References

  1. Aharonovich, I., Englund, D. & Toth, M. (2016). Solidstate single-photon emitters. Nature Photon 10:631–641.
  2. Fehler, K. G. et al. (2019). Efficient Coupling of an Ensemble of Nitrogen Vacancy Center to the Mode of a High-Q, Si3N4 Photonic Crystal Cavity. ACS Nano, 13 (6):6891-6898.
  3. Fehler, K. G. et al. (2020). Purcell-enhanced emission from individual SiV− center in nanodiamonds coupled to a Si3N4-based, photonic crystal cavity. arXiv:1910.06114
  4. Havereke, S. et al. (1994). The etching mechanisms of SiO2 in Hydrofluoric acid. Journal of The
    Electrochemical Society. 141: 2852
  5. Jelezko, F., Wrachtrup, J. (2006). Single Defect Centres in Diamond: A Review. Phys. Status Solidi A, 203:3207−3225.
  6. Li, L., et al. (2015). Coherent spin control of a nanocavity-enhanced qubit in diamond. Nat
    Commun 6:6173. 
  7. Mehta, K.K. and Ram, R.J. (2017). Precise and diffraction-limited waveguide-to-free-space
    focusing gratings. Sci Rep, 7:2019  
  8. O’Brien, J. L., Furusawa, A., and Vučković, J. (2009). Photonic Quantum Technologies. Nature Photonics, 3.12:687–695.
  9. Olthaus, J., Schrinner, P.P.J., Reiter, D.E. and Schuck, C. (2020). Optimal Photonic Crystal Cavities for Coupling Nanoemitters to Photonic Integrated Circuits. Adv. Quantum Technol., 3: 1900084.
  10. Purcell, E. M. (1946). Spontaneous emission probabilities at radio frequencies. Phys. Rev., 69:681
  11. Su, C.-H., et al. (2008) High-Speed Quantum Gates with Cavity Quantum Electrodynamics. Phys. Rev., A 78:062336