

© 2020 The Authors. This article is an open access article distributed under the terms and conditions of the Creative
Commons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

361

32nd European Modeling & Simulation Symposium
17th International Multidisciplinary Modeling & Simulation Multiconference

ISSN 2724-0029 ISBN 978-88-85741-44-7 © 2020 The Authors.
DOI: 10.46354/i3m.2020.emss.053

Modeling of discrete controllers for Smart
Manufacturing Systems

Armand Toguyéni1,*

1Centrale Lille Institut, CRIStAL, UMR 9189 F-59650 Villeneuve-d’Ascq, France

*Corresponding author. Email address: armand.toguyeni@centralelille.fr

Abstract
Smart Manufacturing Systems inherit the work done for three decades on Flexible Manufacturing Systems (FMS) and
Reconfigurable Manufacturing Systems (RMS). Their control is characterized by many residual indeterminism that must be
resolved in real time by smart functions that take into account the state of the system and the production objectives. Inadequate
decisions can lead to system blockages or even dangerous situations. This study focuses on the design of control part which is
seen as a hierarchy of communicating controller layers. The study focuses in particular on the piloting layers, the implementation
of the extended operating sequences and the operation of the transport system. The different layers are modeled using Colored
Petri Nets (CPN). They are structured in communicating CPN processes.

Keywords: Smart Manufacturing System, Discrete Event Systems, Colored Petri Nets, controllers, modelling

1. Introduction

Smart Manufacturing Systems (SMSs) are production
systems that are agile enough to adapt their production
to the needs of each customer (Mittal et al., 2019). In
fact, they are designed for individualized mass
production. This is completely contradictory in that for
decades mass production and individualization of
production were opposite concepts in terms of
production. In the past, individualized production was
only possible in Flexible Manufacturing Systems
(FMSs). Smart Manufacturing Systems therefore
inherited FMS.

Another aspect of SMSs is their ability to adapt to
changing production environments (Hozdić, 2015). For
example, they must adapt to failures. Indeed, they
incorporate intelligent control functions that allow
decisions to be made based on the state of the system
and production objectives.

This study concerns the implementation of SMS

control which corresponds to level 2 of the ISA-95
reference model ((www.isa-95.com): the
Manufacturing Control System (Sprock and McGinnis,
2015).

In this paper, we propose a modular and hierarchical
structuring of the control that allows to implement an
intelligent control while limiting combinatorial
explosion problems. In particular, this work proposes
an operating sequence model that allows to
manufacture on the system any type of parts whose
manufacturing range uses existing machine
manufacturing operations. It also offers solutions for
dynamic routing of the parts in the system according to
their manufacturing operations and the state of the
system.

The paper is structured as it follows. In the second
section, we will present in a synthetic way our method
for designing the sequential control of SMS. In the
following sections we will present the different models
of the control. Thus the third section will be devoted to
the presentation of the Transport System Coordination

https://creativecommons.org/licenses/by-nc-nd/4.0/

362 | 32nd European Modeling & Simulation Symposium, EMSS 2020

Graph (TSCG). In the fourth section we will present a
generic model, of a non-combinatorial Extended
Operating Sequence. The fifth section will propose a
production machine allocator model. We will end with
a conclusion and the perspectives of this work.

2. State-of-the-art

At present, there is no consensus definition of SMSs.
According to (Qu et al., 2019), SMSs can be defined from
3 points of view: engineering, communication
technologies, predictive analysis capabilities and
decision making. This study focuses more precisely on
the engineering aspects.

From an engineering point of view, an SMS “is an
intensified application of advanced intelligence
systems which enable the rapid manufacturing of new
products, dynamic response to product demand, and
real-time optimization of manufacturing production
and supply chain networks …” (Qu et al., 2019).

For that, SMSs must be agile and reconfigurable. To
meet these challenges, two key concepts must be
considered in their design: flexibility and dynamic re-
configuration (Radziwon et al., 2014). Several types of
flexibility can be distinguished, such as product
flexibility, operating sequence flexibility, transport
flexibility, etc. (Beach et al. 2000). The reconfiguration
of a production system is necessary when some of the
resources of the system are changed. This modification
can be permanent (in the case of the addition of a new
resource) or temporary (in the case of a resource
failure). A resource failure is an unforeseen event that
must be dealt with online, both for maintaining
products that are already in the system and for
products that are to be loaded into the system. The
concept of reconfiguration was formalized a few years
ago to define a new class of production systems called
Reconfigurable Production System or RMS (Koren
2014; Koren and Shpitalni 2010).

This study concerns the design of the operational
control of SMSs. According to (Sprock and McGinnis,
2015), this control corresponds to level 2 of the control
architecture which is implemented by PLCs and SCADA
software. From the point of view of this layer, the
system is a Discrete Event System (DES). The objective
of this study is therefore to develop discrete controllers
that allow to realize an intelligent control of the
system. This requires to model all the potential
evolutions of the system due to its flexibility. But the
difficulty is that in this case one is confronted with the
combinatorial explosion induced by all the flexibilities.

3. Control design method

3.1. Synthetic presentation of the design process

Our design process is based on a decoupling between
product specification constraints and resource
specification constraints. Therefore, it comprises two
design flows: a product-centric flow and a resource-

centric flow (Toguyeni 2018).

This study focuses on the construction of the final
models built by the product flow and the transport
resources. Given the distribution of these models on
separate computers communicating through industrial
computer networks and industrial messaging, a
client/server approach is used to take into account the
asynchronous constraint induced by this environment.
Since our approach is based on Petri Nets (PN hereafter,
in our models, this will result in the use of pairs of
semaphore places (Request/Acknowledge) to
synchronize distributed PN processes (Figure 1).

The main final models are the Extended Operating
Sequence (EOS), the Transport System Coordination
Graph (TSCG) and the resource allocators. An EOS
models the different operations applied to a product so
that it goes from its raw state to its finished state. The
TSCG manages transport resources in order to transfer
the products between different workstations. Resource
allocators make it possible to assign resources to
products according to requirements.

3.2. Basic Principles of Modelling

The guiding idea of modeling is to limit the
combinatorial explosion while having models that
reflect the structure of the system. To limit the
combinatorial explosion, we have chosen Petri Nets
(PN) as modeling tools. The interest of PNs is that they
are adapted to the modelling of DES characterized by a
strong parallelism. Since Smart Manufacturing
Systems are made up of different transformation or
transport resources, each with its own computer, our
modeling approach is adapted to the asynchronous of
the system. Thus, each resource is modeled as a PN
process synchronizing with other processes by using
pairs of semaphores (Figure 1).

The second main idea of this work is to decouple the
problems. This decoupling leads controllers to be
functionally specialized for specific tasks. When they
need the services rendered by other control functions,
they use a request/acknowledge mechanism to request
a service as a client and for the controller acting as
server to respond with an acknowledgement and, if
necessary, data transmission (Figure 1).

Figure 1. Pair of semaphores for synchronization between client and

server processes.

Req

Pi

Pj

Client

Process

Pq

Pk

Server

Process
Data request

Waiting

place

Pj+1
Ack

Acknowledge

Request

processingWaiting

place

 Toguyéni | 363

3.3. Illustrative case study

As an example, Figure 2 describes an SMS that will
serve as an illustrative case study throughout this
study. Each machine implements different types of
machining operations denoted "fi". Operation "f3" is
thus performed by all machines. Operation "f4", on the
other hand, can only be performed by the M4 machine.

Figure 2. Example of Smart Manufacturing System

The machines in this system are served by a
conveyor belt. On this conveyor are positioned work
stations (Zi) allowing the robots to palletize or de-
palletize the parts loaded on pallets in order to be
transported by the conveyor to a machine. The
reachability relationships of the conveyor system are
illustrated in Figure 2 by oriented arcs showing the
direction of the movement of parts and pallets. To
move from Z1 to Z3, a part has two possibilities: either
be routed through the IS1-Z2-IS2 route, or use directly
the IS5 route. These alternatives illustrate the flexibility
of routing. Similarly, robot R4 can transfer a part
directly from the IN stock to the Z2 loading station of
machine M1. In normal operation, from IN, the infeed
stock, it loads the parts onto the pallets blocked at the
Z1 station. Likewise, it can unload the finished parts to
the outgoing stock PiOUT. ISi (i{1,2,3,4,5,6}) and Zi
(i{1,2,3,4}) are temporary storage areas of the
conveyor. This study assumes that the capacity of each
Zi is one pallet and that the capacity of each ISi zones is
5 pallets.

3.4. Presentation of the modelling tool

For the modeling of our discrete controllers, we
chose Jensen's Colored Petri Nets (CPN) (Jensen and
Kristensen, 2015). They are more than just Colored PNs.
They effectively incorporate features of
Predicate/Transition PNs. In CPN, each place must be
typed to define the type of tokens allowed. One can
associate to arcs expressions or even functions written
in the ML language. One can also associate to the
transitions, Boolean expressions called guards, which

must be true for a validated transition to be passed. On
the other hand, CPN syntax gives the possibility to link
different models by merging places (use of merge tags).
Figure 3 gives a synthesis of the syntax of a CPN model.
This syntax and semantics will be precise in the
following sections during the presentation of the
different models.

Figure 3. Summary of CPN Petri Net syntax

In Figure 3, all red annotations have been added to
present the syntax of a CPN model.

4. Transport System Coordination Graph

The transport system is one of the essential
components of a Smart System. Indeed, it must be
flexible enough to allow indirect reachability between
all the workstations of the production system. The
problem is therefore not to model explicitly the
combinatorics relating to routing flexibility. For this
purpose, all the controllers are designed based on the
datagram technique for product routing. The datagram
is a technique for packet routing in computer networks.
In our approach, it consists in routing each product in
the production system according to two parameters: its
final destination and the state of the machining or
transport resources.

The final destination of a part is defined by the
resource allocators of the control function. To explain the
principle, one considers Figure 4.

Figure 4. Generic diagram for the transport of a product

The transport of a product from a source location to
a destination location is based on the reachability
relationships between the different workstations of the
production system. If one considers the system in

Z2

IN PiOUT

CONVEYOR

CV

R2

M1

M2

Z1

IS5

Z3

Z4

M3

R1R3

R4

f1,f3

f2,f3 f1,f3

IS2

IS1

IS3

IS4

M4

f2,f4

IS6

Guard

Initialization of

marking

Name of the

place

‘PST’ is the type

of the place

‘SRC’

Expression of the

arc

Call of an ML

function

3-uple of

variables

Fusion tag

Rs

LA

Local Area

DA

Destination
Area

Transport
System

Rd

Source Machine
(SRC)

Ms

Destination
Machine

(DEST)

Md

Indirect reachability
between areas

Direct
reachability Direct

reachability

Indirect
reachability

364 | 32nd European Modeling & Simulation Symposium, EMSS 2020

Figure 2, Z2 and M1 are in an external reachability
relationship because it is necessary to use robot R1 to
transfer parts between these two locations: Z2 belongs
to the conveyor and M1 represents a machine.
Conversely, there is an indirect internal reachability
relationship between Z1 and Z3 because they both
belong to the conveyor (Z1 and IS5 on the one hand and
IS5 and Z3 on the other hand are in a direct reachability
relationship).

Given a product located at a starting location such as
the Ms machine in Figure 4, the control function must
first define its final destination according to the next
operation to be performed from the point of view of its
machining range. Taking into account the state of the
transformation resources, the control will allocate the
Md machine to perform this transformation operation.
The TSCG will then be in charge of managing the
transport of the part to Md. The route is defined
dynamically according to the state of the transport
resources (breakdowns, saturation of intermediate
stocks).

To build the TSCG of any system, we have defined
generic primitives corresponding to the functions of
each workstation. We also define different types of
transfer between stations in direct accessibility.

4.1. Generic model of a workstation

Any workstation can be abstracted as a processing area
and an internal stock managed as a FIFO (Figure 5). A
system can be abstracted as composed of workstations
operating according to the producer and consumer
principle. This is because, from the point of view of
products transportation, an upstream station can be
seen as the producer of this product and the
downstream station as the consumer of this product. In
fact, in relation to the entire production process for the
individual parts being manufactured, a station can be
either a producer or a consumer.

Figure 5. Abstraction of a workstation

This leads us to represent each workstation
controller by a PN process that describes its different
functionalities. This process has a pair of places named
PROD/CONS which describes its storage capacities.
Indeed, the PROD place models the parts present in the
internal stock of the station while the CONS place
models the residual capacity of the machine. When the
machine is empty, the CONS slot contains as many
tokens as the storage capacity of the station. This pair
of slots will allow to condition the part transfers to the
workstation. A workstation is also characterized by a
second pair of places noted REQ/ACK. The REQ place
models a request to evacuate parts from the station.
The ACK place allows the process evacuating the part to

indicate to the process managing the workstation that
the part has been evacuated. Figure 6 shows the generic
PN process modeling any workstation from the
perspective of the transportation system. It is exactly
the model of processes that manage workstation called
Zi in the example of Figure 2. The optional part does not
exist for processes that manage workstation ISi or
machine Mi. The difference is because Zi manage two
kinds of objects: parts and pallets. The pairs of places
PROD/CONS and REQ/ACK manage the composite
object product on a pallet. The optional part of Figure 6
serves to manage part palletization (or depalletization)
on (from) a pallet.

Figure 6. Generic model of a workstation of transport system

4.2. Generic model of a transfer

In a Smart System, a transfer of part can be done by
different transport resources: Autonomous Guided
Vehicles (AGV), robot, or pallets on a conveyor. In all
cases, a transfer can be abstracted in the same way than
the process depicted by Figure 7.

The same transport resource can make different
transfers. Therefore, to trigger a transfer, it is
necessary to check several preconditions. The object to
be transferred must be on the start workstation of the
transfer (example O2 on Ai in Figure 7). There must also
be a free space at the destination location so that the
transport resource is not blocked by the current
operation, since it may be requested for other transfers.
The first precondition is defined by marking the REQ
place of the PN process that manage the upstream
workstation (Ai in Figure 8). The second precondition
is obtained by marking of the place CONS modeling the
residual capacity in free spaces of the downstream
workstation. If both conditions are met (stage 1 of
Figure 7) then the evacuation is carried out (stage 2 of
Figure 7). These two first stages are modelled in the
transfer process through the START place. The transfer
process can then issue an acknowledgement to the
management process of the upstream station. The
transfer then continues with the transfer itself and the
deposit of the product on the downstream station
(stage 3 of Figure 7). It is modeled by the END place in
Figure 8.

Working area
(unitary capacity)

Operation(s)

transfer
Inputs from

different
producers

Outputs to
different

consumers

FIFO buffer

/ Routing

P

/Wait

P/CONS

P/REQ

P/ACK

Depalletization
Synchronization for

evacuation

/IN->P

P/pal_Req

P/pal_Ack

Palletization

E->P1/

Ack

E->P1/

Req

/P->OUT

P/Dep_Ack

P/Dep_Req
P1>S/

Req

P1->S/

Ack

Pad_ar/

Ack

/Nop

P/PROD

Pad_dep/

Req

Interface with EOS
Interface with other

processes of TSCG

Optional

 Toguyéni | 365

Figure 7. The different stages of a basic transfer.

Figure 8 is a CPN model of a generic transfer. To
interpret this figure, the following definitions must be
associated with it:

• val KNPT = 4; (* NPT=Number of Part Types*)

• colset TPARTTYPE=index pi with 0 .. NPT; (*
Definition of part types pi(0), pi(1), pi(2), ..,
pi(KNPT) ; pi(0) means no part *)

• colset TPI=record pit:TPARTTYPE * piid:INT;

• colset TAREA=with
null|M1|M2|M3|M4|Z1|Z2|Z3|Z4|IS1|IS2|IS3|I
S4|IS5|IS6 ;

• colset TPIDEST=record
pit:TPARTTYPE*piid:INT*dest:TAREA ;

• colset TLISTTPIDEST= list TPIDEST (* Define a
list of part *);

• var part:TPIDEST; (*Declaration of a variable of
type TPIDEST to be bind with token in places of
type TPIDEST *)

As an example, the place PROD can contain a list with
two part as [{pit =PI(1), piid=12,dest=Z3},{pit =PI(2),
piid=5,dest=Z1}].{pit =PI(1), piid=12,dest=Z3} define a part
of type PI(1) that have the identifier piid=12 and this
part destination is Z3.

Note here that there are other types of transfer
corresponding to palletization or depalletization
operations (their preconditions are defined in the
optional part of Figure 6).

Figure 8. Generic process for transferring an object between two
workstation in direct accessibility.

One can note that to model the PROD place as a list,
one can use the CPN list type constructor. We have thus
defined the type TLISTTPIDEST which is used as the type
of the PROD place.

The routing of the parts is done from workstation to
workstation based on the final destination of the part
(for example Z3 for part 12). At the exit of each
workstation, a routing function (such as the route2
function used as a guard for the AitoAj/t1 transition in
Figure 8) is used to select a transfer to one of the next
workstations downstream of the current workstation.
Thus, from one station to another, the pallet is directed
to the destination station. When it arrives at this
station, the guard of the arrival transition is true and so
the station communicates with the EOS to indicate that
the part has arrived at its destination (See the
Pad_ar/Ack interface position in Figure 6.

5. Extended Operating Sequences

An Extended Operating Sequence (EOS) models all the
operations to be applied to transform a raw part into a
finished part. It is extended to take into account its
interactions in order to ask the pilot to allocate a
machine to carry out the next transformation operation
in its production line, and then to ask the TSCG to
coordinate the transport resources in order to
transport the product to this machine.

The EOS of a product involves dozens of processing
operations and each operation can be performed on
dozens of different machines. It is therefore necessary
to propose a new model of EOS that allows to reduce
this combinatorial explosion.

For this, let us take into account the generic transfer
scheme given in Figure 2 as well as the routing principle
presented in section 364. On the basis of these data, we
specify by means of a sequence diagram, the operations
to be implemented from the EOS point of view (Figure
9). It shows that each part transfer requires
systematically five operations:

stage

stage 1

stage 2

stage 3

Ai R Aj

o2o5 o6

Free place

Ai R Aj

o2

o5 o6

R Aj

o6o2

Ai

o5o4

t1

\Nop

\START

t2

\END

t3

Ai

\REQ

\ACK

Aj

\CONS

\PROD

AitoAj

TPIDEST

TPIDEST

TPIDEST

INT

INT

INT

1

5part

part

part

part

part

TLISTTPIDEST

lpart^^[part]

[routage2(part)=Aj]

lpart

[]

366 | 32nd European Modeling & Simulation Symposium, EMSS 2020

• A pre-allocation at the current location (Ms) to
define the destination of the part (DA for
Destination Area).

• A palletization of the part from the source machine
Ms on the palletization area (called here LA for
Local Area), in direct accessibility relation with the
source machine.

• A transfer from LA to DA. LA and DA are a priori in
indirect reachability relationship. In order not to
model at the EOS level all the routing possibilities
between two characteristic zones in indirect
accessibility, we simply model the fact that the part
is in transfer between LA and DA. The flexibility of
the transfer and thus the combinatorics generated
by this flexibility are taken into account by the CPN
model of the TSCG (section 4).

• A request to assign the destination machine Md
when the palletized part arrives in DA.

• A depalletization of the part in DA and its loading
on the destination machine Md.

Figure 9. Sequence diagram for the transfer of a part based on the
diagram in Figure 2

Once the part arrives in Md, the EOS must start the
manufacturing program corresponding to the
requested machining operation. When it is finished, the
status of the part machined on Md is exactly the same as
its initial status considered on the machine Ms. Thus, it
is obvious to consider that Md plays now the role of the
previous Ms and that it is then possible to restart the
whole procedure described here.

To be generic, it is necessary to deal with specific
cases such as the departure of the part from "IN" stock
and its return to "PiOUT" stock when it is finished.
Indeed, when there is no longer a production operation,
it is necessary for the pre-allocation/allocation
function to direct the part towards the exit of the
system (case 1). Another specific case is when pre-
allocation designates the current machine as the one
that is to carry out the next production operation. This
means that at this point, the pre-allocation acts as an
allocation and therefore it is not necessary to transfer
the part since it is in the right location.

Figure 10. Generic EOS - Part 1

Figure 10, 11 and 12 give the generic CPN model of an
EOS. It is decomposed into 3 figures because of its size
and to allow a better reading. Some transition are
repeated in several figures to show the link between the
different parts of the model. For example, the transition
"LAtoDA_s" (which models a request of a transfer from
the location "LA" to the location "DA") is repeated in
Figure 10 and Figure 11. The black places and transitions
on these figures model the sequence of operating states
for performing a transformation operation. The EOS is
designed as a function that interprets the manufacturing
sequence of each part as a list of processing operations to
be performed. The green parts represent the
asynchronous communications (interfaces) with the
machines allocators. The blue places represent the
interfaces with TSCG. The red places represent the
interfaces with machine models (out of the scope of this
study).

The CPN models are based on the following ML data
structures:

(* Definition of the location of a product *)

colset OSA=with
IN|INvZ1|Z1vZ2|Z2vZ3|Z3vZ4|Z1vZ3|Z3vZ1|Z4vZ1|Z1vOU
T|Z2vM1|M1vZ2|Z3vM2|Z3vM4|M2vZ3|M4vZ3|Z4vZ3|M
3vZ4|M1|M2|M3|M4|OUT|

IS1|IS2|IS3|IS4|IS5|IS6|Z1|Z2|Z3|Z4;

(* Definition of manufacturing states of raw, semi-
finished and finished products *)

colset TRSF=with
f1|u1|f2|u2|f3|u3|f4|u4|f5|u5|f1f2|u1f2|u1u2|f3f1f4|u3f1f
4|u3f1u4|u3u1u4;

(* Definition of the state of a product *)

colset PST=product PID*TRSF*OSA;

(* Definition of the state of a part and its final
destination*)

colset PSTD=product PID*TRSF*OSA;

In a CPN model, it is necessary to assign a type to

Ressource
Allocators

EOS TSCC

Preallocation request (Src, op)

Palettization
(Src, LA)

Destination area (Src, DA) Palettization request (Src,LA)

Arrival (LA)

Transfer request (LA, DA)

Transfer
(LA, DA)Arrival (DA)Allocation request (DA, op)

Machine allocation (DEST)

Depalettization
(DA, DEST)

Depalettization request (DA,DEST)

Arrival (DEST)

Machine

Machining(op)

Run(op)

Stop(op)

 Toguyéni | 367

each place in the model. The places of the EOS are 2
types: PST or PSTD. The type PST defines the state of a
product from the point of view of its machining
sequence (type TRSF) and from the point of view of its
location in the production system (type OSA). For
example, the place "SRC" (Figure 10) is the first place
in the model. It defines the status of each product in the
form of a 3-
uple(part_id,manufacturing_sequence,location.
Thus, the token (1,f1f2,IN), specifies that one has a part
of type f1f2 present on the IN parts inbound stock and
that it is the part of identifier 1. The identifier of each
part is defined in relation to its type and makes it
possible to know that it is processed in relation to the
flow of parts in progress in the system.

The place "N_SRC" (Figure 12) represents the end of
the EOS according to the sequence diagram in Figure 9
and is also of type PST. In fact the "SRC" and "N_SRC"
places are merged by the blue 'src' tag in the figures. It
means that they are in fact the same place, giving the
EOS a recursive operating. Indeed, when the token
arrives in the "N_SRC" place it means that all the
operations necessary to perform a machining
operation of the manufacturing sequence have been
executed. For example, with respect to the product
which was modelled by the token (1,f1f2,IN) in "SRC",
a token (1,u1f2,M2) can be found in "N_SRC" . This
means that the product is located on the machine M2
on which the transformation operation f1 was
performed, leading to a semi-finished product. The
merging of the two places means that the token
(1,u1f2,M2) is now in the "SRC" square, indicating that
the whole EOS process can now be started again in order
to perform operation f2.

Note the guard defined by the expression "loc<>
PiOUT" which is associated with the "PRE" transition.
This condition avoid restarting the EOS when a product
is exited to the stock "PiOUT". It is the stop condition
of the recursive procedure implemented by the EOS.

Some of the places in the EOS and the interface
places with the other models are of the PSTD type. This
type adds the destination location (which is of type
OSA) to the previous PST type. For example, this is the
case of the "PRE_A" place (Figure 10) which is an
interface place with the machine allocators. For
example, the token (1, f1f2,IN,Z3), means that part 1
located on the IN stock must be transported to station
Z3 of the conveyor. This is a pre-allocation that will be
explained in the following section. The consequence is
that all the interface places with the TSCG (blue colored
places in the figures) are of type PSTD.

Figure 11. Generic EOS – part 2

Places "PRE_R", "PRE_A" and "PRE_Ab" (Figure
10) are used to manage a pre-allocation request.
"PRE_R" is the request semaphore and "PRE_A" is the
response semaphore. The transition "SRCtoSRC"
models the situation of a pre-allocation equivalent to
an allocation (note that the "PRE_A" and "PRE_Ab"
places are merged by the tag "fusion 7"). This situation
occurs when the allocated machine corresponds to the
machine on which the part is located. In this case, the
token modeling the product goes directly from the
"SRC" place to the place modeling its presence on the
destination machine. Therefore, the "DEST_Mb" place
(respectively "Run_b") in Figure 10 is merged with the
"DEST_M" place. (Respectively "Run") of Figure 12 by
the tag "fusion10" (respectively "fusion 5").

A similar construction is performed in Figure 11 by
the transition "DAtonewDA". It models the
reorientation of a part to a new destination ("newDA")
in case of failure of the destination machine "Md"
during the transfer from "LA" to "DA". It is a case of
dynamic reconfiguration.

Figure 12. Generic EOS – part 3

6. The piloting

In our approach, the role of piloting is to resolve the
residual indeterminism of the control part. It is an
intelligent function that can be implemented in
different ways and with different formalisms. In
particular, this function takes charge of resource

368 | 32nd European Modeling & Simulation Symposium, EMSS 2020

allocation in order to arbitrate conflicting requests. The
considered resources are pallets, machines, robots,
switches and conveyor junctions. In this study, we have
chosen to present only the allocation of machines. We
have chosen here to use the formalism of CPN. This
makes it possible to understand the role of the piloting
and also to check correctness of the EOS in a
verification stage (out of the scope of this study).

An originality of this work is to distinguish two
stages in terms of machine allocation: pre-allocation
and final allocation. The pre-allocation makes it
possible to increase the performance of the production
system.

To understand the idea, let us return to the generic
scheme of transporting a given product in Figure 4.
From the transport point of view, it is necessary to
carry out the allocation of the destination machine
(Md) before the part leaves. If its capacity is one unit,
this means that this machine could no longer be
assigned to other products. As a result, all other
products that would have to be machined in Md would
be blocked at their current location, instead of
approaching Md in masked time. This would therefore
limit the productivity of the system. For a given
processing operation, pre-allocation consists of
indicating the machine to which the part is to be
transferred. This pre-allocation therefore does not
require the machine to be free. It only requires that it is
not faulty. The result of the pre-allocation is the
workstation upstream of the destination machine. Let
us call it, destination location or DA (see Figure 4).
Thus, the final allocation is requested only when the
product has arrived at DA, i.e. close to the machine Md.
If the destination machine chosen by the pre-
allocation is not faulty, the allocation consists of
changing its status from free to busy (“occupied”) and
then indicating to the EOS the final destination as
corresponding to Md.

In the EOS, the pre-allocation request is modelled by
the pair of places "PRE_R"/"PRE_A".

The allocation of a machine therefore corresponds to
defining it as the final destination of a product. This is
the reason why in our generic EOS model presented in
the previous section, we also have the pair of places
"ALLO_R"/"ALLO_A" which respectively model the
allocation request and the response given by the
resource allocator.

In fact, pre-allocation and allocation work very
closely together. They both depend on the state of the
machine and the location of the part at the time they are
requested. For pre-allocation, the machine must be
available (not broken down) and the request must be
made at a source location such as Ms (Figure 4). For
allocation, the machine must be free and operational.
The request is made on DA the characteristic area
before the final destination machine. In case of failure
of this machine (occurring during the routing), the
allocation request is implicitly interpreted by the

control as a pre-allocation request. The part is then re-
routed to another machine implementing the same
function as the one that became defective during the
transfer of the part to Md (see transition "DAtonewDA"
in Figure 11).

On the contrary, in case of a pre-allocation request,
if the pre-allocated machine is the machine on which
the part is located, the request is interpreted by the
control as an allocation request (cf. transition
"SRCtoSRC" in Figure 10) These two cases show that it
is necessary to implement the pre-allocation and the
allocation in the same way. Therefore, the same
controller implements both functions. Its behavior
differs according to the location of the part at the time
of the request and according to the state of the machine.

To implement the machine allocation controller, let
us define the following types and variables in CPN ML.

(* Define the status of a machine *)

colset STAT=with free|occupied|faulty;

colset RES=subset OSA with [M1,M2,M3,M4];

colset RAWOP=subset TRSF with [f1,f2,f3,f4];

(* Defines a list of transformation operations *)

colset LOP=list RAWOP;

(* Defines a machine with respect to its state and its list
of transformation operations *)

colset MACH=product RES*STAT*LOP*OSA;

(* Defines the allocated machine type *)

colset ALMAC=product RES*PID*TRSF*LOP*OSA;

Thus the type MACH, allows to specify a machine
from the allocator point of view. For example, the token
(M2,free,[f1,f3,f1f2],Z3), indicates that the machine M2 is
free, and that it can make parts of type f1, f3 or f1f2
(means operation f1 on a part of type f1f2). The value Z3
indicates the location in the system from which an
allocation request can be made. In all other locations,
any allocation request received through the "ALLO_R"
(allocation request) place is considered as a pre-
allocation request. This place of the allocator model is
merged with the "ALLO_R" place of the EOS (Figure 13).

 Toguyéni | 369

Figure 13. Example of machines’ allocator

These types are used to define the type of places of
the CPN model in Figure 13. Next, let us define the
variables that are used to write the model expressions.

(* Part identifiers *) var pid,pid2:PID;

(* Location variables *) var loc, loc2,dest,ndst: OSA;

(* Machining operation variables *) var tf,tf2: TRSF;

(* List of machining operations performed by a machine
*) var ltf:LOP;

(* Status variable of a machine *) var st:STAT;

(* Variable defining a machine *) var m:RES;

By using these variables, it is possible to write the
expressions of the CPN arcs. For example, the
expression of the arc between the "Standby" place and
the "Reqproc" transition is (m,st,ltf,loc). It means that
the "Reqproc" transition is validated if there is at least
one such token at the "Stanby" place and an expression
token (pid,tf,loc2) at the "ALLO_R" place. The "Standby"
place is the default place that models the state of the
machine.

In order to select a machine that can be allocated, let
us define the ML function noted "selmach". Its
definition is as follows:

fun selmach(r:RES, ope:TRSF, lope:LOP)=

if lope=nil then false

else if ope=hd lope then true

else selmach(r,ope, tl lope) ;

This function is used in the guard of the "Reqproc"
transition to check if the "r" machine implements the
"ope" operation. This operation must be included in the
list of operations of 'r'. This ML function is defined
recursively.

Likewise, let us define the allocation function in ML.

fun allocation(r:RES,l:OSA,l2:OSA)=

if l2=l then r else l;

This function is used in the arc expression between
the transition "AckSend" and the place "ALLO_A". It
defines the destination of a part. Although named
allocation, it also implements pre-allocation. Indeed, if
'l2' the location of request corresponds to 'l', the
location of loading of the machine 'r', then the
destination is the resource 'r', and so it is an allocation.
Otherwise the destination is 'l', and it is thus a pre-
allocation.

In Figure 13, the entire green part of the model
represents the interface with the EOS. The part in
purple models the management of machine failures
and repairs. When it is validated, the "fault" transition
has priority in order to be able to remove from the
"Standby" place the tokens of a broken machine. The
rest of the model in black color represents the pre-
allocation/allocation process. Note the use of an
alternative expression for the arcs between the
"AckSend" transition and the "Standby" and "Occupied"
places respectively. In case of pre-allocation (case
where loc2<>loc), no token is added to the "Occupied"
place and a machine token is put back to the "Standby"
place with the free value for the machine status. In the
case of an allocation, the machine token is put in both
the "Standby" place and the "Occupied" place with the
occupied value for its status. One may be surprised that
the token is put back in the "Standby" place. This allows
other parts to request pre-allocations even if the
machine is machining a part.

The guard of transition 'RestProc' is defined by the
expression selmach(m,tf,ltf) andalso (st=free orelse
(loc<>loc2)). This expression means that a pre-
allocation is made if the position of the part (loc2) is
different from the allocation request position of the
machine (loc). If the part is in ‘loc’, the selected
machine must be free (st=free).

When a machine is returned after the unloaded part has
been evacuated to DA (in case a token is placed in the
"REST" place), it is necessary to reset the status field of
the token of the machine in the "Standby" place to the
"free" value. This is why the transition “RestProc” is
validated simultaneously by the “Standby” and
“Occupied” places. When this transition is fired, it
removes the tokens from both places and returns a
token whose status field value has been reset to "free"
to the "Standby" place.

7. Conclusions

In this paper we have proposed the main bricks to
model sequential controllers for the implementation of
Smart Manufacturing Systems. All of these controllers
are presented in the form of three layers with interlayer

370 | 32nd European Modeling & Simulation Symposium, EMSS 2020

communications. The intermediate layer is the EOS. It
communicates with the highest layer in which the
machine allocators are found. In practice, the
allocation results in the definition of an orientation of
the part towards the next machine according to its
manufacturing sequence. Once this direction is known,
the EOS can ask the TSCG (low layer) to transport the
product to this machine.

All the models are developed in the formalism of
CPN, allowing in particular verification by simulation.
Each model has been checked separately to ensure that,
provided the other models are good properties, it is live
and bounded. So the model of a system can be created
simply by copying and pasting these modeling bricks.

The next step will be to develop a method for
systematically translating these models into code that
can be implemented on industrial computers. For
example, the TSCG models are developed as safe PN
processes (disregarding PROD/CONS places) and
therefore could be easily translated into Sequential
Functional Chart (IEC 61113-3) in order to be
implemented on Programmable Logic Controller (PLC).

References

Beach, R., Muhlemann, A. P., Price, D. H., Paterson, A.
and Sharp, J. A. (2000). A review of manufacturing
flexibility. European journal of operational re-
search, 122(1), 41-57.

IEC 61113-3 (2013). Programmable controllers –Part3:
Programming languages
https://webstore.iec.ch/publication/4552

Jensen, K. and Kristensen, L. M. (2015). Colored Petri
nets: a graphical language for formal modeling and
validation of concurrent systems. Communications

of the ACM, 58(6):61-70.

Hozdić, E. (2015). Smart factory for industry 4.0: A
review. International Journal of Modern
Manufacturing Technologies, 7(1):28-35.

Koren, Y. (2014). Reconfigurable Manufacturing
System. Preprint of the CIRP Encyclopedia of
Production Engineering. Springer Berlin
Heidelberg, 1035-1039.

Koren, Y. and Shpitalni, M. (2010). Design of
reconfigurable manufacturing systems. Journal of
manufacturing systems, 29(4):130-141.

Mittal, S., Khan, M. A., Romero, D. and Wuest, T. (2019).
Smart manufacturing: characteristics, technologies
and enabling factors. Proceedings of the Institution
of Mechanical Engineers, Part B: Journal of
Engineering Manufacture, 233(5):1342-1361.

Qu, Y. J., Ming, X. G., Liu, Z. W., Zhang, X. Y. and Hou, Z.
T. (2019). Smart manufacturing systems: state of
the art and future trends. The International Journal
of Advanced Manufacturing Technology, 103(9-12),
3751-3768.

Radziwon, A., Bilberg, A., Bogers, M. and Madsen, E. S.
(2014). The smart factory: exploring adaptive and
flexible manufacturing solutions. Procedia
Engineering, 69:1184-1190.

Sprock, T. and McGinnis, L. F. (2015). A conceptual
model for operational control in smart
manufacturing systems. IFAC-PapersOnLine,
48(3), 1865-1869.

Toguyeni A., 2018. Design and verification of discrete
event controllers for Smart Factory. IMAACA’2018,
Budapest (Hungry).

