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Abstract 
In face of the dizzying progress of Industry 4.0, the application of Artificial Intelligence in manufacturing processes is a 
challenging task. In this research, a Convolutional Neural Network (CNN) was implemented to determine the quality of 
dissimilar joints DP 600-AISI 304. Infrared images obtained during the process of resistance spot welding were processed. The 
idea of applying a CNN focuses on filtering infrared images before training the deep neural network, for the detection of certain 
hidden features in the data, as well as extracting patterns and classifying welded joints. For its implementation, open source 
tools such as Anaconda, libraries such as Tensorflow and Keras, high-level Application Programming Interface (APIs) were 
used to work with neural networks in Python language. After processing and training with infrared images, a neural model was 
obtained and the metrics obtained from the training were analysed. It was found that the use of deep learning and in particular 
CNN are techniques that can be considered as predictive methods for the classification of welded joints and computer vision 
supervision. Data processing was possible on very small timescales, facilitating optimization and efficiency improvement in 
manufacturing processes. 
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1. Introduction  

With the rise of the industrial revolution, the so-

called Industry 4.0, there is a tendency to apply 
Artificial Intelligence (AI) in the different scenarios of 
industry. Systems based on computer vision are 
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strongly linked to the development of industries that 
are in continuous transformation of their processes 
with the aim of optimizing and increasing production. 

There are solutions for the visual inspection of 
online processes such as supervised and unsupervised 
learning machines, which have proven to be effective 
methods with application in the automotive, 
pharmaceutical, and microelectronic industries, 
among others. The electric resistance spot welding 
(RSW) process is considered the leading welding type 
in the automotive industry, used to join two or more 
metal sheets. There are studies (Espinel et al., 2016) 
that report that the number of welding points made 
during the manufacturing process of a vehicle is 
estimated between 3,000 and 10,000 points. 

Environmental impact, energy saving and safety are 
three very important aspects to be considered by car 
manufacturers. The production of the different parts 
that structure the vehicle are inspected online and 
more and more studies are being conducted by the 
scientific community every day in search of models 
that further foster the optimization these processes, 
as well as the location of possible defects in the welded 
joints found in different parts of the vehicle, allowing 
to obtain a higher quality and competitive product.  

Non-destructive tests (NDT) are considered in the 
characterization of welded joints, because their 
practice does not permanently alter their physical, 
chemical, mechanical, or dimensional properties and 
can be applied at any stage of the process (Gutiérrez, 
2017). Infrared Thermography (IT), due to its 
application, is considered a non-invasive technique, 
since it can be used to quantify the temperature of a 
surface without direct contact with the material, based 
on the measurement of infrared radiation of the 
electromagnetic spectrum. The use of IT and artificial 
neural networks (ANN) can be applied to the 
inspection and maintenance of manufacturing 
processes (Garrido et al., 2020). 

Researchers like Martín et al. (Martín et al., 2010), 
use an ANN to predict the influence of the pitting 
corrosion behavior (PCB) of joints obtained in the RSW 
process, using as material an austenitic steel 304 
(AISI304). They designed an ANN considering that the 
phenomena that relate the heat generated in the RSW 
process with the PCB are highly complex. They 
consider that to train the network it is important to 
consider a good number of input data, as well as the 
number of neurons that will make up the hidden layer 
of the network. The results obtained confirm that the 
use of ANN is effective for prediction. 

Similar studies were conducted by Gavidel et al. 
(2019), though in this case using deep neural networks 
(DNN). They determined, from the analysis of 
different algorithms of machine learning equipment 
that DNNs can be used as predictive models, and can 
be considered non-destructive methods to evaluate 
the quality of the weld, as well as to predict the 
diameter of the weld point. For the analysis, they 

collect data from studies made by other authors with 
different predictive models and establish a 
comparison between them, concluding that DNNs are 
more efficient for this type of task. 

On the other hand, He and Liu (2020) designed a 
deep regression and classification model for the 
detection of surface defects in generic industrial 
products. The method was validated on three public 
data sets. From the analyzes, the authors built a total 
of six class groups and then designed a convolutional 
neural network (CNN), obtaining good results in terms 
of detection precision and efficiency. 

A high performance index is obtained in the studies 
made by Guo et al. (2019), from the use of a CNN to 
classify the quality of the welded joint from images of 
cross sections of joints obtained by RSW. They employ 
50 epoch training, reaching a precision for 
classification of 99.01%. In this case, a destructive 
method is used to characterize the quality of the 
welded joint. 

Studies conducted by Mayr et al. (2018) use 
different learning machine techniques to assess the 
quality of the weld from the analysis of the defects of 
each one of the weld joints analyzed. The CNNs 
appeared to be more efficient when classifying from 
processed images. 

The studies made have focused on the detection of 
defects, however, no work has been reported related to 
the application of CNN in the RSW process using 
dissimilar materials DP600 - AISI304. Similarly, no 
CNN-type neural models have been found that process 
IR images in this type of process. In this work, the aim 
is to classify the quality of the dissimilar joints 
obtained by the RSW process, using IR images, with 
the use of CNN.  

2. Materials and Methods 

For the development of this work, two 1.2 mm thick 
metal sheets were used, a Dual Phase steel (DP600) 
and an austenitic stainless steel (AISI304). They were 
lap-welded on a direct current medium frequency 
machine (MFDC), consisting of a Bosch PSG 3100 
transformer, a Bosch PSI600.100L controller and a 
water-cooled pneumatic clamp. In this case, 
depending on the polarity used, the DP 600 steel is 
placed in contact with the positive electrode and the 
AISI 304 with the negative electrode of the welding 
clamp (DP600 / AISI 304). Table 1 shows the levels of 
the RSW process variables during the experimental 
design. 

 Table 1. Experimental design. 

Parameter 
Low level   

(-1) 

Central 
level 
 (0) 

High level 
(+1) 

Welding current, kA 3 4 5 
Welding time, ms 300 400 500 
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2.1. Preparation of the data set 

The quality of the welded joint is influenced by the 
levels of the process variables (Table 1), and 
mechanical tests were performed for its evaluation in 
order to obtain data on the characteristics and 
properties of the welded joints. Mechanical resistance 
tests were made using a SHIMATSU universal testing 
machine, model AGX 50 kN. In this process, 
mechanical resistance is closely related to point 
diameter and indentation, therefore, these were 
considered to build the classes. 

The tests were performed according to the norm 
(Zuniga & Sheppard, 1997) that standardizes the tests 
for the RSW process. The maximum failure force and 
failure mode of the welded joint were also selected as 
variables that influence the quality of the welded 
joints. The measurement of the diameters of the 
welding points was made in accordance with ISO 14373 
(2007) and the indentation measurements were made 
from the cross sections of the welded joint. 

The data set with the IR images used was extracted 
from a private dataset, presented in a study made by 
Espinel et al. (2016). For this study, the authors 
worked with dissimilar welded joints of the DP600 / 
AISI304 type, considering the higher mechanical 
resistance obtained for this position of the sheets or 
polarity. The quality indicators were considered: the 
presence or not of defects, formation of pores and the 
occurrence or not of expulsions. All the data generated 
from the mechanical tests were organized and the 
welded samples were classified into three classes: 
good, acceptable and bad welds. 

The IR images extracted during the RSW process were 
tagged and class groups were formed corresponding to 
the properties obtained from the welded joint to train 
the neural network and obtain a model with good 
performance and high classification values. The 
images, to be processed in the CNN input layer, were 
resized to be processed by the neural network, 
adjusting to a size of 100x100x3 pixels while 
maintaining the 3 channels of RGB colors. 

2.2. Model creation 

The CNN-type network model is intended to simulate 
the way the human brain learns and works thanks to 
the ANN architecture and the optimization routine 
applied to it. It was decided to use this network model 
because it is possible to work with structured data 
such as images, in order to classify them and their 
proven efficiency in previous research. 

When the CNN model is faced with a stimulus, certain 
neurons activate, evaluate the information they have 
received, react and communicate with other neurons. 
In subsequent stimuli, they add new data to those they 
already know, evaluate the result of the previous 
actions and correct their operation to achieve the best 
possible reaction. 

The difference with other traditional neural network 
models is that this one has a higher number of layers, 
between 5 and 50 layers or even more. Figure 1 shows 
the basic structure of a CNN (Convolutional Neural 
Network). 

 

Figure 1. Basic structure of a CNN. 

 

The first step of creating and training the CNN is to 
define the network architecture. The architecture of a 
CNN varies depending on the types and numbers of 
layers included. In figure 1, it can be seen that the 
highest level layers study the characteristics of the 
object, and the lowest layers, classify and decide the 
characteristics of the image. To conduct a good 
training process, the weights of all the layers must be 
well adjusted, as they will be trained at the same time. 

The image input layer defines the size of the input 
images of a convolutional neural network and contains 
the raw pixel values of the images. A convolutional 
layer consists of neurons that connect to subregions of 
the input images. A convolutional layer learns the 
features localized by these regions while scanning 

through an image. In this case, the image size used 
was 100x100x3. A rectified linear unit (ReLU) layer 
follows the convolutional layer. A nonlinear activation 
function performs a threshold operation to each 
element, where any input value less than zero is set to 
zero, see Equation 1. 

 

𝑓(𝑥) = {
𝑥,    𝑥 ≥ 0
0,    𝑥 < 0

   (1)   

The pooling layers follow the convolutional layers, 
performs down-sampling by dividing the input into 
rectangular pooling regions, and computing the 
maximum of each region, reducing the number of 
connections to the following layers. They do not 
perform any learning themselves, but reduce the 
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number of parameters to be learned in the following 
layers contributing to reduce overfitting. The size of 
the rectangular regions is determined by the pool size. 
The the output of a pooling layer is defined by 
Equation 2. 

 
(Input Size– Pool Size +  2 ∗ Padding)/Stride +  1       (2) 

 

The software calculates the size of the padding at 
training time so that the output has the same size as 
the input when the stride equals one. 

The upper layers are formed by a sequence of layers 
with a convolution function ReLu (Rectified Linear 
Unit Layers) that do not add complexity to the network 
and Pooling. The latter reduce the dimension of the 
data and the number of parameters, calculating the 
maximum of a region, the mean values and other 
descriptors. Groups of these layers are normally 
concatenated, which are responsible for learning the 
characteristics of the images. 

At the end of this phase, there is a volume, which 
will be flattened and converted into a vector by the 

layer called Flatten, which makes it possible to work 
with the neural networks, which are fully connected.  

Finally, for classification a Softmax layer follow the 
final fully connected layer. The output unit activation 
function is the Softmax function (Equation 3). 

 

𝑦𝑟(𝑥) =  
𝑒𝑎𝑟(𝑥)

∑ 𝑒
𝑎𝑗(𝑥)𝑘

𝑗=1

            (3) 

where, 0 ≤ 𝑦𝑟 ≤ 1 and ∑ 𝑦𝑗 = 1𝑘
𝑗=1 . 

2.3. Implementation of the CNN network 

The implementation of the convolutional neural 
network was performed through Anaconda-
environment software Jupyter developed in Python, 
using the Keras API and the Tensorflow framework, 
which allow the implementation of neural networks 
using sequential models. The models are built 
considering the layers that the neural network will 
have. Figure 2 shows the sequence followed to create 
and validate the proposed neural network model. 

 

 

Figure 2. Diagram of CNN network approach implementation. 

 

  

Figure 3. Structure of the CNN network model. 

As shown in Figure 2, once the images were read 
from the directory where they were housed, they were 
normalized, dividing each element by the number of 
pixels, that is, 255, obtaining an array with values 
between 0 and 1. 

Once the images are pre-processed, the 
convolutional network model is defined to then do the 

compilation specifying the functions: optimization, 
cost or loss, and the metrics to use. In this case, the 
Adam optimization function, the categorical-
crossentropy loss function and for the metrics, the 
accuracy function are used, as shown in Figure 3. 

As shown in Figure 3, the Conv2D instruction 
introduces a convolutional layer and the MaxPooling 
instruction, the pooling layer. Two convolutional 
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layers were created in this model. For each 
convolution, the ReLu function was used as the 
activation function. The Flatten layer guarantees to 
flatten the volume of data and convert it into a vector, 
which allows working with neural networks, which are 
fully connected. Then a Dense layer is added, which it 
is going to have 256 neurons that are going to be 
connected to the previous layer and also the activation 
function to be used is the ReLu. 

The Dropout instruction (Figure 3) does the 
Dropout regularization function. With the passage of 
the convolution, it will be possible for the model to 
extract features from the image. Finally, the last 
Softmax layer will indicate the label to which the 
image corresponds, applying a probability of 
similarity. These last layers make the classification of 
the IR images. 

2.4. CNN Training 

The first results of the initial training with the dataset 
used were not good due to a slight imbalance between 
the images belonging to the different defined classes. 
To solve this, it was necessary to use the Data 
Augmentation technique, which is one of the most 
used in these cases. This technique consists of 
processing each one of the images, generating for each 
one of them N variations. These new images are 
created following several principles such as: turning 
the original image, rotating it, increasing it or 
modifying the color space, and in this way avoiding 
possible cases of overfitting. 

Finally, the network was trained, saving the 

training result in a variable in order to extract the 
history of the training data. The metrics obtained were 
evaluated graphically, and the Matplotlib library was 
used to visualize them. Although it has already been 
evaluated during training, it can be evaluated with 
another dataset that contains characteristics similar to 
the source images. 

3. Results and Discussion 

The appearance of defects such as pores, expulsion, 
very low or very high values of indentation and point 
diameter, together with the failure mode, affect the 
quality of the welded joint. Figure 4 shows 
representative images of factors that were considered 
to evaluate the quality of the dissimilar joints 
according to the three defined classes.  

Mechanical resistance is the property with the 
highest incidence when evaluating the quality of the 
welded joint. Figure 4 shows that the images that 
belong to the Bad class, present an interface failure 
mode (IF) and may have pores. The Acceptable class 
has a larger weld point diameter, pull-out failure 
mode (PO) and may or may not have pores, with a 
greater mechanical resistance than the bad ones. For 
the joints classified into the Good class there is no 
occurrence of pores. These are joints where the failure 
mode is PO and have an adequate point diameter with 
a mechanical resistance much higher than that of the 
previous cases. 

 

 

Figure 4. Defined classes to label the images of the dissimilar joints a) presence of pores, b) presence of expulsion, c) failure mode. d) IR image. 
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The preparation of the data set for the model 
construction, the structure of the convolutional 
network model, the techniques applied to balance the 
data of each class and the image normalization, all 
contributed to the increase in accuracy of the 
classifier. Figure 5 shows the performance of the 
network model during training and validation, based 
on the evaluation of the precision with which IR 
images are classified during training periods. 

An accuracy of 99.98% was obtained for the 
training set and 97.33% for the validation set. The 
increase of the stages for the training and validation 
set guarantees a higher index of precision during the 
classification. Furthermore, there is a minimal 
difference between the two groups, and this is due to 
loss during training. 

Figure 6 shows this loss behavior and the model fit 
during training. The loss is nothing more than the sum 
of the errors made for each data in the training or 
validation sets. For the training dataset, from the 
second epoch the model loss begins to decrease 
significantly, until reaching minimum values of 0.003 
and remaining stable around this value, which 
indicates correct learning. As this value decreases, 
greater adjustment is achieved in the model 
classification task. 

In a similar way, it happens for the validation 
(Figure 7), observing a slight increase in loss 
compared to the training phase, which starts to 
decrease with the increase of the iterations from the 
17th epoch. 

 

 

Figure 5. Performance of the CNN model during the training and 
validation phases. 

 

A first approach to the construction of the CNN-
based model allows satisfactory results to be obtained 
and the validity of the use for the classification of the 
images analyzed to be demonstrated. Future works 

will focus on increasing the set of images to improve 
its classification capacity. 

 
Figure 6. Performance evaluation for training and model loss during 
each training epoch. 

4. Conclusions 

From the analysis of the results achieved during this 
research, it is possible to reach the following 
conclusions: 

 

 
Figure 7. Model loss function in the training phase for training 
dataset and validation. 

• The validity of the use of convolutional neural 
networks (CNN) for the analysis and classification 
of the quality of RSW welded joints of dissimilar 
materials DP600 / AISI30 was demonstrated from 
IR images obtained online from the process. 

• The use of techniques to avoid overfitting in 
network training guaranteed a model accuracy of 
97.33%. 
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• The CNN network model can be considered a non-
invasive method for the classification of the 
quality of the weld; allowing to perform data 
processing in very small timescales, thus 
facilitating the optimization and improvement of 
the productivity of industries. 
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