Fuzzy Logic-Based Inference System for Prediction of Energy Input in Laser Metal Deposited Aisi316 Single-Beads

  • Daniel R. Tasé Velázquez ,
  • André Luís Helleno,
  • Maria Célia de Oliveira,
  • Hipólito Carvajal Fals,
  • Emilio Jimenez Macias 
  • a,c Post-Graduation Programme in Production Engineering, Methodist University of Piracicaba, São Paulo, Brazil
  • b,c Engineering School, Mackenzie Presbyterian University, São Paulo, Brazil
  • College of Mechanical and Industrial Engineering, Oriente University, Santiago de Cuba, Cuba
  • Visiting Professor at Federal Technological University of Paraná, Paraná, Brazil
  • Department of Electrical Engineering (DIE), University of La Rioja, Logroño, Spain
Cite as
Tasé Velázquez D.R., Luís Helleno A., de Oliveira M.C., Carvajal Fals H., Jimenez Macias E. (2020). Fuzzy Logic-Based Inference System for Prediction of Energy Input in Laser Metal Deposited Aisi316 Single-Beads. Proceedings of the 32nd European Modeling & Simulation Symposium (EMSS 2020), pp. 400-409. DOI: https://doi.org/10.46354/i3m.2020.emss.058

Abstract

Laser metal deposition (LMD) process has the capability to produce functional and complex 3D parts. The deposits characteristics are strongly influenced by the deposition parameters and volume energy input. The aims of this paper is to predict using a fuzzy logic-based inference system (FIS), the volume energy generated after depositing AISI 316 SS single-beads by LMD. Previously to FIS modeling, the influence of laser power (Lp), laser scan speed (Lss), powder flow (Pf) and focal length (Fl) on deposited beads were studied by analyzing the response-variables bead height (Bh) and bead width (Bw). ANOVA allowed identifying that Pf mostly affect the Bh, and Lp has greater significance on Bw. Predictive FIS modeled presented high adequacy assessing the experimental conditions, showing an average relative error of 4.76 %. Thus, the proposed FIS can be can be effectively utilized to predict the volume energy input and be integrated within an automated LMD environment to reduce complexities in process planning activities and increase process stability.

References

  1. Amine T., Newkirk J.W., Liou F., 2014. An investigation of the effect of laser deposition parameters on characteristics of multilayered 316L deposits. International Journal of Advanced Manufacturing Technology, 73, 1739–1749.
  2. Ansari M., Mohamadizadeh A., Huang Y., Paserin V., Toyserkani, E., 2019. Laser directed energy
    deposition of water-atomized iron powder: Process optimization and microstructure of single-tracks. Optics & Laser Technology, 112, 485-493.
  3. Arrizubieta J., Aitzol L., Magdalena C., Eneko U., Amaia A., 2018. Hardness, grainsize and porosity formation prediction on the Laser Metal Deposition of AISI 304 stainless steel. International Journal of Machine Tools and Manufacture, 135, 53–64.
  4. Carter L.N., Wang X., Read N., Khan R., Aristizabal M., Essa K., Attallah M.M., 2016. Process optimisation of selective laser melting using energy density model for nickel based superalloys. Materials Science and Technology, 32 (7), 657-661
  5. Cherry J.A., Davies H.M., Mehmood S., Lavery N.P., Brown S.G.R., Sienz J., 2014. Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting. The International Journal of Advanced Manufacturing Technology, 76 (5–8), 869–79.
  6. Das B., Roy S., Rai R.N., Saha S.C., 2016. Application of grey fuzzy logic for the optimization of CNC milling parameters for Al–4.5%Cu–TiC MMCs with multiperformance characteristics. Engineering Science and Technology, an International Journal, 19 (2), 857-865.
  7. Farahmand P., Kovacevic R., 2014. Parametric study and multicriteria optimization in laser cladding by a high power direct diode laser. Lasers in Manufacturing and Materials Processing, 1, 1–20.
  8. Graf B., Ammer S., Gumenyuk A., Rethmeier M., 2013. Design of experiments for laser metal deposition in maintenance, repair and overhaul applications. Procedia CIRP, 11, 245–248.
  9. Huang Y., Ansari M., Asgari H., Hossein M., Farshidianfar M.H., Sarker D., Khamesee M.B.,
    Toyserkani E., 2019. Rapid prediction of real-time thermal characteristics, solidification parameters and microstructure in laser directed energy deposition (powder-fed additive manufacturing). Journal of Materials Processing Technology, 274, 116286.
  10. Latha B., Senthilkumar V.S., 2010. Modeling and analysis of surface roughness parameters in
    drilling GFRP composites using fuzzy logic. Materials and Manufacturing Processes, 25 (8),
    817–827. 
  11. Li J., Ren H., Liu C., Shang Sh., 2019. The Effect of Specific Energy Density on Microstructure and
    Corrosion Resistance of CoCrMo Alloy Fabricated by Laser Metal Deposition. Materials, 12, 1321.
  12. Lin J.L., Lin C.L., 2005. The use of grey-fuzzy logic for the optimization of the manufacturing process. Journal of Materials Processing Technology, 160 (1), 9-14.
  13. Lin J.L., Wang K.S., Yan B.H., Tarng Y.S., 2000. Optimization of the electrical discharge machining
    process based on the Taguchi method with fuzzy logics. Journal of Materials Processing Technology, 102 (1–3), 48-55.
  14. Liu S., Kovacevic R., 2014. Statistical analysis and optimization of processing parameters in highpower direct diode laser cladding. The International Journal of Advanced Manufacturing
    Technology, 74, 867–878.
  15. Louzada D.R., Monteiro E.C., Fortaleza L.G.S., Barbosa C.R.H., Velázquez D.R.T., Silva E.C., Gusmão L.A.P., 2016. Quality by Design approach in the development of a magnetic transducer for biomedical measurements: Preliminary results on Design Space configuration. Journal of Physics: Conference Series, 772, 1-6.
  16. Ma M., Wang Z., Zeng X., 2015. Effect of energy input on microstructural evolution of direct laser fabricated IN718 alloy. Materials Characterization, 106, 420–427.
  17. Rajamani D., Esakki B., Arunkumar P., Velu R., 2018. Fuzzy logic-based expert system for prediction of wear rate in selective inhibition sintered HDPE parts. Materials Today: Proceedings, 5, 6072–6081.
  18. Romi. ROMI DCM 620-5X HYBRID Technical specifications. Available in:
    https://www.romi.com/wpcontent/uploads/2017/10/fol_romi_dcm_hybrid_po_aa_052017_baixa.pdf. Access February 2019.
  19. Saade J.J., Diab H.B., 2004. Defuzzification methods and new techniques for fuzzy controllers. Iranian Journal of Electrical and Computer Engineering, 3, 161-174.
  20. Sahu R.K., Mahapatra S.S., Sood A.K., 2013. A study on dimensional accuracy of fused deposition modelling (FDM) processed parts using fuzzy logic. Journal for Manufacturing Science and Production, 13 (3), 183 – 197.
  21. Schmidt M., Merklein M., Bourell D., Dimitrov D., Hausotte T., Wegener, K., Overmeyer, L.,
    Vollertsen, F., Levy, G.N., 2017. Laser based additive manufacturing in industry and academia. CIRP Annals - Manufacturing Technology, 66 (2), 561–583.
  22. Srivastava M., Rathee S., Maheshwari S., Kundra T.K., 2018. Multi-objective optimization of fused deposition modelling process parameters using RSM and fuzzy logic for build time and support material. International Journal of Rapid Manufacturing, 7 (1), 25–42.
  23. Supriadi S., Manabe K., 2013. Enhancement of dimensional accuracy of dieless tube-drawing
    process with vision-based fuzzy control. Journal of Materials Processing Technology, 213 (6), 905-912.
  24. Thijs L., Verhaeghe F., Craeghs T., Humbeeck J., Kruth J-P., 2010. A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Materialia, 58, 3303–3312.
  25. Velázquez D.R.T., 2017. Quality by Design Fuzzy multiparamétrico no desenvolvimento de sistema de medição para uso clínico. Dissertation (MSc) –Pontifícia Universidade Católica do Rio de Janeiro.
  26. Velázquez D.R.T., Louzada D.R., Monteiro E.C., Fortaleza L.G.S., Barbosa C.R.H., Silva E.C., Gusmão L.A.P., 2018. Multi-parameter fuzzy design space for QbD approach applied in the development of biomedical devices. Journal of Physics: Conference Series, 1044, 1-6.
  27. Wei K., Gao M., Wang Z., Zeng X., 2014. Effect of energy input on formability, microstructure and mechanical properties of selective laser melted AZ91D magnesium alloy. Materials Science & Engineering, A611, 212–222.
  28. Wu B.H., Wang J-J.J., 2009. A neuro-fuzzy approach to generating mold/die polishing sequences. Journal of Materials Processing Technology, 209 (7), 3241-3250.
  29. Wu J., Liu T., Chen H., Lia F., Wei H., Zhang Y., 2019. Simulation of laser attenuation and heat transport during direct metal deposition considering beam profile. Journal of Materials Processing Technology, 270, 92–105.
  30. Yu T., Zhao Y., Sun J., Chen Y., Qu W., 2018. Process parameters optimization and mechanical
    properties of forming parts by direct laser fabrication of YCF101 alloy. Journal of Materials
    Processing Technology, 262, 75-84. 
  31. Zimmermann, H.-J., 2001. Fuzzy set theory and its applications. 4th ed. Springer Science + Business Media New York.