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Abstract 
Laser metal deposition (LMD) process has the capability to produce functional and complex 3D parts. The deposits 
characteristics are strongly influenced by the deposition parameters and volume energy input. The aims of this paper is to 
predict using a fuzzy logic-based inference system (FIS), the volume energy generated after depositing AISI 316 SS single-
beads by LMD. Previously to FIS modeling, the influence of laser power (Lp), laser scan speed (Lss), powder flow (Pf) and focal 
length (Fl) on deposited beads were studied by analyzing the response-variables bead height (Bh) and bead width (Bw). ANOVA 
allowed identifying that Pf mostly affect the Bh, and Lp has greater significance on Bw. Predictive FIS modeled presented high 
adequacy assessing the experimental conditions, showing an average relative error of 4.76 %. Thus, the proposed FIS can be can 
be effectively utilized to predict the volume energy input and be integrated within an automated LMD environment to reduce 
complexities in process planning activities and increase process stability. 
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1. Introduction  

Additive manufacturing (AM) by laser metal 
deposition (LMD) is an advanced manufacturing 
process which uses laser as energy source, to build 3D 
parts melting metallic powders in a layer-by-layer 
sequence. In LMD additive process, powder is provided 
so located by a feed nozzle (coaxial) where a flow of 
inert gas, which may be helium or argon, protects and 
isolates the material deposition. A metallic powder is 

completely fused by a laser beam, resulting in highly 
robust parts. Powder fusion is made by means of a 
high-power laser directed to impact a substrate, and 
consecutive layers are deposited to produce the 
desired object (Schmidt et al. 2017). 

LMD process has demonstrated his suitability to 
produce functional parts with complex geometries 
which can’t be manufactured using conventional 
processes such as machining or casting. Several works 
study the development of mostly statistical 
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approaches for characterizing LMD process 
parameters assessing different response-variables. 

Ansari et al. (2019) studied the iron powder single-
tracks geometrical characteristics using laser power, 
scanning speed and powder feed rate as process 
parameters by means of RSM (Response Surface 
Method) and ANOVA (analysis of variance) for testing 
the regression model. 

Wu et al. (2019) developed a laser-powder coupling 
numerical model for DMD process with discontinuous 
powder feed rate for simulating the laser attenuation 
and heat transfer during laser-powder coupling 
process. Huang et al. (2019) studied the process 
parameters correlation with the thermal 
characteristics for microstructure rapid prediction of 
laser powder-fed additive manufacturing (LPFAM). 

Arrizubieta et al. (2018) developed a mathematical 
model to simulate and predict hardness, grain size and 
porosity of AISI 304 stainless steel powder deposition 
through differential equations and Central Finite 
Difference method. 

Yu et al. (2018) studied the process parameters 
optimization and performance testing of directed laser 
fabrication. The results showed that laser power, laser 
scan speed and powder feed rate affect the bead 
geometry, therefore affect the quality of cladding 
samples. 

Farahmand and Kovacevic (2014), and Liu and 
Kovacevic (2014) evaluated the effect of laser power, 
powder feeding rate, scanning speed, carrier-gas flow 
rate and stand-off distance on the bead geometry, 
microhardness and powder catchment efficiency using 
CCD-RSM. 

The commonly process parameters studied include, 
but not limited, laser power, powder flow and feeding-
rate, laser velocity scan and stand-off distance 
between the laser head and substrate. Most of the 
surveys explore only through statistical analysis, the 
effect of the process parameters on the geometrical 
characteristics of deposited layers. 

However, one important variable that is highly 
dependent of process parameters and geometrical 
characteristics interaction is the energy per volume of 
material generated during a layer deposition. While 
much of the reported studies about LMD process 
parameters performance and its effect on output 
variables do not include sufficient information to 
compute the energy inputs, some studies presents 
different approaches and processes for this analysis. 

Thijs et al. (2010) study the microstructural 
performance during selective laser melting (SLM) of 
Ti–6Al–4V. One of the variables studied was the effect 
on the energy density E (J m-3) after using different 
strategies, such as, varying the hatch spacing and scan 
velocity. 

Amine, Newkirk and Liou (2014) evaluated the 
influence of laser parameters on the shape and size of 

the laser melt pool by analyzing the specific energy 
(Es) involved. 

Wei et al. (2014) studied the effect of energy input 
(laser energy per volume Ev) on formability, 
microstructure and mechanical properties of 
deposited AZ91D magnesium-alloy by SLM. The 
results showed that laser energy input plays a major 
role on the quality of the samples. 

Cherry et al. (2015) used SLM to investigate the 
effect of laser energy density (Q) in J/mm3, on 316L SS 
properties. Point distance and exposure time were 
varied and their effect on porosity, surface finish, 
microstructure, density and hardness, was assessed. 

Ma, Wang and Zeng (2015) investigated the 
microstructural evolution of direct laser deposited 
IN718 alloy cladding tracks and the effects of energy 
input (Ev) on microstructural architectures, dendritic 
morphology, precipitated phases and microhardness. 

Carter et al. (2016) studied the SLM process 
optimization using energy density model for Ni based 
superalloys, founding that the void area decreases 
with the increase in energy density (J mm-2). 

Li et al. (2019) studied the effect of specific energy 
density (J/g) on microstructure and corrosion 
resistance of cobalt-based alloy samples fabricated by 
LMD. They conclude that the specific energy density 
reflect the relationship between input energy (W) and 
feedstock powder (g/s) that have a great effect on 
solidification microstructure. 

From these previous studies can be observed that 
energy density has major implications on quality 
geometrical performance (layer height and width) and 
microstructure (hardness, porosity, cracks, voids) of 
additive-manufactured parts and samples. 
Nevertheless, studies for predicting or simulation of 
this ‘energy parameter’ performance that affect LMD 
process chain represents a research line for 
exploration to reduce and eliminate geometry-related 
problems and depositions defects, since the LMD 
process stability is compromised as variations appear 
during the process execution. 

Fuzzy logic (FL) is suitable for modeling complex 
processes that contain uncertain and vague 
information with less resources use regarding 
hardware and software, and has being shown to be an 
effective technique for addressing linguistically 
specified goals (Latha and Senthilkumar 2010). 

Recent studies applied FL to assess parameters and 
manufacturing processes performance. Rajamani et al. 
(2018) studied the wear characteristics prediction of 
high-density polyethylene samples fabricated by 
selective inhibition sintering (SIS). 

Srivastava et al. (2018) presented a multi-objective 
fused deposition modeling (FDM) process 
optimization using RSM embedded FL analysis. 

Velázquez et al. (2018); Velázquez (2017) and 
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Louzada et al. (2016) used FL inference principles to 
configure the operational design space of a magnetic 
transducer for biomedical applications, as a foreign 
object locating system in human body. 

Das et al. (2016) developed a grey-fuzzy algorithm 
to find the process parameters optimal level for CNC 
milling of Al–4.5%Cu–TiC metal matrix composites. 

Supriadi and Manabe (2013) used an adaptive fuzzy 
controller to enhance the dimensional accuracy of 
dieless tube-drawing process. 

Sahu, Mahapatra and Sood (2013) used FL to 
develop a study on dimensional accuracy FDM 
processed parts. 

Some other researchers addressed FL principles for 
studying other manufacturing processes, such as, 
mold/die polishing sequences (Wu and Wang 2009) 
and electrical discharge machining (EDM) process 
with multi-response (Lin and Lin 2005; Lin et al. 
2000). 

No works were reported yet until this research 
proposal for studying the application of FL approaches 
for predicting the effect of LMD process parameter 
integration on the volumetric energy density (Ev) 
generated on AISI 316 single-beads deposition. Thus, 
this study aims to evaluate the behavior of the 
integration of process parameters laser power - Lp 
(W), focal length - Fl (mm), laser scan speed - Lss 
(mm/s) and powder flow - Pf (g/min) on output-
variables bead height - Bh (mm) and bead width – Bw 
(mm), and predict by configuring a FL-based 
inference system (FIS), the input Ev (J/mm3) 
generated after deposition of AISI 316 single-beads by 
LMD process in order to validate a mechanism for 
guarantee and control the process stability and 
performance.  

2. Materials and Methods 

This work was carried out using a hybrid 
manufacturing system ROMI DCM 620-5X HYBRID 
that integrates the additive LMD and subtractive 5-
axis machining processes. The machine integrates a 
vertical laser-head with 500 W maximum power 
Ytterbium Fiber Laser from manufacturer IPG 
Photonics, 1070 nm wavelength and 1 mm of 
maximum spot diameter. The system includes another 
machining-head, which ensures a rotational range of 
15-15000 rpm. The dimensions on the X, Y, and Z 
linear axes are 620x520x460 mm respectively and the 
rotating table surface on axes B and C is 600x600 mm. 
Figure 1 shows the configuration of the hybrid 
machine and its operational axes. Nevertheless, the 
focus of this study relies on the LMD process as part of 
preliminary studies to understand how to ensure the 
process stability. 

 
Figure 1. Hybrid System and Operational 5-Axes. 

2.1. Process parameters and samples 

From previous literature review and after analyzing 
the deposition and machining system conditions were 
identified the four process input parameters (Lp (W), 
Fl (mm), Lss (mm/s), Pf (g/min)) and their operating 
levels (Table 1) that directly affect the deposition 
geometrical characteristics, as response-variables (Bh 
(mm), Bw (mm)). A factorial analysis was performed 
to determine the better parameter and operating levels 
possible combinations, resulting in 18 experiments, in 
order to improve the experimental efforts and assess 
its interaction’s effect on the analyzed variables. Lss 
(mm/s) parameter was maintained constant and was 
not included on the factorial analysis. 

Table 1. Process Parameter and Operating Levels. 

Parameters Unit Operating levels 

Lp W 225 250 275 
Lss mm/s 5 5 5 
Pf g/min 8.95 - 13.42 
Fl mm 4.8 5.0 5.2 

The laser beam was focused on the substrate 
material (AISI 316 SS) to generate 8 single-beads (B1 
to B8) on the 18 specimens. The sample dimensions 
were Ø 25 and 9 mm height, after removing 1 mm of 
material to ensure the surface flatness. A zig one-way 
pattern was followed as deposition strategy. The 
powder used was also AISI 316 SS in the range of 44–
106 μm. The length of each single track was 10 mm. 
The powder was fed simultaneously, by a coaxial 
hopper focused in the laser-spot with 90° orientation 
relative to the substrate, with argon gas as a shield. 

Figure 2 present the schematic operating 
configuration that laser beam, shielding gas and 
powder feed operate regarding the substrate. Figure 3 
shows the single-beads characteristics deposited on 
one sample. 
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Figure 2. Laser Operational Principle. Adapted from ROMI (2019). 

 
Figure 3. Sample with Deposited Single-Beads Characteristics (left) 
and Cross-Sectioned sample (right). 

 

Figure 4. Cross-Sectioned Single-Bead showing the Bh (mm) and 
Bw (mm) 

The specimens were cut in the cross section, Figure 3 
(right), and prepared metallographically and them 
chemically attacked with the reagent Vilela. Bh (mm) 
and Bw (mm) measurement (Fig. 4) was performed 
using an optical microscope Nikon Optiphot and lens 
focus, with 1 mm measurement pattern, was x100. 

2.2. FIS for volume energy density prediction 

The FIS for Ev (J/mm3) prediction was modeled in 
Matlab R2011b software on Fuzzy Logic Toolbox. The 
volumetric energy formula is defined in the Equation 
1: 
𝐸𝑣 (𝐽/𝑚𝑚³) =  

𝐿𝑝 (𝑊)

𝐿𝑠𝑠 (𝑚𝑚/𝑠)∗𝐵ℎ (𝑚𝑚)∗𝐵𝑤 (𝑚𝑚)                             (1) 

When more than one clad is deposited, higher 
degree of re-melting between over deposited layers 
(∆z) calls into doubts the use of the bead height (Bh) 
in the energy density function. The same occurs when 
there is an overlap rate between deposited neighbor-
beads, which the hatch space or beads width (Bw) 
could come to vary. As a single track was deposited 
instead more than one continuous layer, no hatch 
spacing was taken into account for Ev calculus. So, was 
used in the equation the bead width for volumetric 
consideration since the laser power has direct 
influence on beads width, and no over deposited beads 
could be re-melted. 

The structure of the FIS configured in this paper is 
presented in Figure 5. The development of this 
predictive FIS involves four subsystems. The first one 
is the Input data, which are the non-fuzzy data sets 
corresponding to Lp (W) and Lss (mm/s) operating 
levels previously defined and Bh (mm), Bw (mm) 
measurements observations. 

The second, is the Fuzzyfication module, which 
transforms the non-fuzzy data into fuzzy sets (for 
inputs and outputs) so that they may become 
instances of input and output linguistic variables. 
Then, is possible to structure the fuzzy sets and 
membership functions (MFs) for both inputs and 
outputs. The MFs used in this paper were the 
triangular shape as presented in Equation 2: 

 

𝑇𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟 (𝑥; 𝑎, 𝑏, 𝑐) =

{
 
 

 
 
0,                  𝑥 ≤ 𝑎
𝑥−𝑎

𝑏−𝑎
, 𝑎 ≤ 𝑥 ≤ 𝑏

𝑐−𝑥

𝑐−𝑏
,          𝑏 ≤ 𝑥 ≤ 𝑐

0,                    𝑐 ≤ 𝑥

                   (2) 

 

Where, x is a variable (input or output); a, b and c 
indicate triangular fuzzy triplet of fuzzy sets. 

The MFs shape can be defined in Matlab® 
Membership Functions Editor toolbox for lesser 
complexity calculation. The 15 fuzzy sets and its MFs 
structured in this paper are represented in Figure 6. 12 
input fuzzy sets and its input MFs corresponds to the 
input parameters, Figure 6 (a)-(d), and the other three 
fuzzy set and MFs corresponds to the predicted output 
volumetric energy density (Ev), Figure 6 (e). The 12 
input linguistic variables corresponding to each fuzzy 
set and MFs (inputs and outputs) were classified as 
low, medium and high for Lp (W); low, medium and 
suitable for Bh (mm); small, medium and large for Bw 
(mm) and, slow, suitable and unsuitable for Lss 
(mm/s), as seen in Figure 6 (a)-(d), respectively. The 
output linguistic variables for Ev (J/mm3) were 
classified as low, medium and high as seen in Figure 6 
(e). 

Third subsystem is the Fuzzy Inference module, 
implemented in this paper using the Mamdani (Max-
min) inference method (Mamdani and Assilian 1975), 
which performed a “fuzzy reasoning” from the based-



404 | 32nd European Modeling & Simulation Symposium, EMSS 2020 
 

 

rules defined to generate a fuzzy value. The Mamdani 
inference engine determines how rules previously 
defined following the “if”-“then” constraints are 
activated for a given situation, combined, and along 
with input fuzzy data, the module infer the control 
actions. Fuzzy rules-base (16) structured in this paper 
are presented in Table 2, codified as: inputs (I = 1, …, 4) 
for Lp (W), Bh (mm), Bw (mm) and Lss (mm/s), 
respectively; MFs and fuzzy sets for each linguistic 
variable (j = 1, …, 3) for each input (I); and output (O) 
for each output MFs, fuzzy sets and linguistic 
variables (i = 1, …, 3) representing the Ev (J/mm3) 
predicted values. 

Fourth interface is the Defuzzification method that 
transforms the information associated with the output 
linguistic variables into a numeric value (crisp) that 
can be measured (Saade and Diab 2004). The 
defuzzyfication method applied here for predicting 
volumetric energy density Ev (J/mm3) was the so 
called center of gravity (COG) method (Zimmermann 
2001), as following the Equation 3: 

 
𝑦0 = 

∑𝑦𝜇𝑥(𝑦)

∑𝜇𝑥(𝑦)                                                                     (3) 
 
Where, y0 is the defuzzified output of the predicted 
response variable Ev (J/mm3); y is the variable center 
value of fuzzy regions and µx(y) the aggregated 
membership functions. However, the defuzzified 
output is not needed to be manually calculated since 
the defuzzyfication method can be selected in 
Matlab® Fuzzy Logic Editor toolbox. 

 

 

Figure 5. FIS Configuration for Volume Energy Density Ev (J/mm3) 
Prediction. 

 
Figure 6. Membership Functions and Fuzzy Sets for: (a)-(d) Input 
Parameters and, (e) Ev (J/mm3) Output. 

Table 2. Fuzzy Rules Base. 

Rules Ij Ij Ij Ij Oi 

1 11 21 31 42 O3 
2 11 22 31 42 O3 
3 11 22 32 42 O1 
4 11 23 32 42 O1 
5 12 21 32 42 O2 
6 12 22 32 42 O3 
7 12 22 33 42 O1 
8 12 23 33 42 O1 
9 13 21 33 42 O2 
10 13 22 33 42 O3 
11 13 23 33 42 O1 
12 12 21 32 42 O3 
13 12 22 32 42 O1 
14 12 23 32 42 O1 
15 13 21 33 42 O3 
16 13 22 33 42 O1 

3. Results and Conclusions 

Firstly, the effect of the interaction of process 
parameters on bead height (Bh) and bead width (Bw) 
was evaluated. Bh and Bw values were observed to 
increase independently, when the powder flow was 
higher (13.42 g/min). The greatest height was 
observed on the experiment 12 at 275 W of Lp, 5 mm of 
Fl, 5 mm/s of Lss and 13.42 g/min of Pf. The largest 
width was reached on the experiment 6 at 275 W of Lp, 
4.8 mm of Fl, 5 mm/s of Lss and 13.42 g/min. Table 3 
summarizes these results. 

An ANOVA was used to identify which parameters 
had significant influence on beads geometrical 
characteristics Bh and Bw. Tables 4 and 5 present this 
analysis, reaching P values <0.05 indicate that the 
parameters’ effect on Bh and Bw is significant at a 95 
% confidence level. As a result, it is observed on Table 
4 that the powder flow (g/min) has greater influence 
on Bh (mm), and laser power (W) higher signifance on 
Bw (mm) (Table 5). 
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Table 3. Experimental, Predicted Values and Error.  

Run Lp (W) Fl (mm) Lss (mm/s) Pf (g/min) Bh (mm) Bw (mm) 
Ev (J/mm³) 

Error % 
Experimental Fuzzy 

1 
225 

4,8 

5 

8,95 0,266 0,516 327,85 353,90 7,36 

2 13,42 0,414 0,593 183,30 199,00 7,89 

3 
250 

8,95 0,259 0,603 320,15 318,50 0,52 

4 13,42 0,383 0,712 183,35 199,00 7,86 

5 
275 

8,95 0,260 0,662 319,54 318,50 0,33 

6 13,42 0,436 0,743 169,78 193,70 12,35 

7 
225 

5 

8,95 0,199 0,551 410,40 389,61 5,34 

8 13,42 0,400 0,626 179,71 189,69 5,26 

9 
250 

8,95 0,253 0,613 322,40 318,50 1,22 

10 13,42 0,392 0,657 194,14 190,90 1,70 

11 
275 

8,95 0,248 0,679 326,62 318,50 2,55 

12 13,42 0,454 0,688 176,08 200,00 11,96 

13 
225 

5,2 

8,95 0,244 0,528 349,29 354,00 1,30 

14 13,42 0,377 0,611 195,36 190,90 2,33 

15 
250 

8,95 0,215 0,606 383,76 353,90 8,44 

16 13,42 0,418 0,634 188,67 199,00 5,19 

17 
275 

8,95 0,231 0,686 347,08 353,90 1,93 

18 13,42 0,416 0,679 194,72 199,00 2,15 

Table 4. ANOVA of Bh (mm) Response for each Source of Variation (Process Parameters).  

Source of variation SS Error df Error MS Error F P-value 

Laser power (W) 0,0020 0,1292 2 15 0,0010 0,0086 0,1158 P>0.05 
Powder flow (g/min) 0,1247 0,0065 1 16 0,1247 0,0004 307,0088 P<0.05 
Focal length (mm) 0,0003 0,1309 2 15 0,0002 0,0087 0,0171 P>0.05 

Table 5. ANOVA of Bw (mm) Response for each Source of Variation (Process Parameters).  

Source of variation SS Error df Error MS Error F P-value 

Laser power (W) 0,0311 0,0266 2 15 0,0156 0,0018 8,7570 P<0.05 
Powder flow (g/min) 0,0098 0,0479 1 16 0,0098 0,0030 3,2881 P>0.05 
Focal length (mm) 3,5e-05 0,0577 2 15 1,8e-05 0,0038 0,0046 P>0.05 

 

Figure 7 presents mean values of Bh (mm) and Bw 
(mm) for each Lp (W) and Pf (g/min) interactions. 

 
Figure 7. Mean Values of Bh (mm) and Bw (mm) for Lp (W) and Pf 
(g/min) Interactions. 

It was verified when the powder flow increased 
(g/min), the height of the beads were greater. 
Therefore, it can be stated that the lower levels of the 
powder flow affect the height of the beads and the 
quality of growth of the future layers. The laser power 
alone does not represent a significant influence on the 
bead height. Instead, the interaction of the sustained 
increase in laser power and powder flow has direct 
impact on the width of the beads. 

The results showed on Table 3, Table 4 and Table 5 
are in agreement with the works developed by Sun and 
Hao (2012), Graf et al. (2013), Liu and Kovacevic 
(2014), Farahmand and Kovacevic (2014), Yu et al. 
(2018) and Ma, Wang and Zeng (2015). 

Sun and Hao (2012) developed a mathematical 
model for analyzing the influence of laser power, laser 
advancement speed, and powder flow on Ti6Al4V 
powder deposition geometry. This analysis indicated 
that powder flow had a significant effect on the width 
and height of the coating, while laser-scanning speed 
had a significant effect on the penetration depth (not 
assessed in this paper). 
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Graf et al. (2013) performed a full factorial analysis 
to determine the effect of process parameters on the 
cords geometry. They concluded that cords width was 
typically affected by laser power and the track height 
is mainly influenced by the deposition velocity and the 
powder flow. As deposition velocity (in this paper Lss) 
was not varied, these results were not confirmed. 

Liu and Kovacevic (2014), Farahmand and 
Kovacevic (2014) concluded that the powder flow, the 
gas flow rate and the interaction between the gas flow 
rate and the standoff (not assessed) were the most 
significant factors affecting the bead height, while the 
laser power was the factor most affects the bead width. 

Ma, Wang and Zeng (2015) in their study 
corroborated that as a result of the orthogonal 
experiment developed with two factors and four levels 
that the track width is affected (increase) while 
increasing laser power (W) and laser speeds (mm/s). 

Figure 8 presents the Rules Viewer Toolbox of the 
Ev (J/mm³) predicted values as result of the 
experimental procedure performed on the FIS. The 
Rules Viewer is used to determine each expected 
output according to each experimental condition 
executed. The first four columns show the input 
parameters, and fifth column indicates the output 
defuzzified response-variable predicted Ev (J/mm³). 

For example, by considering the 13th experiment 
(Table 3), it may be noted that for 225 W of laser 
power, 0.244 mm of bead height, 0.528 mm of bead 
width, and 5 mm/s of laser-scanning speed, the 
output value of the predicted Ev = 354 
J/mm³.Predicted Ev, when compared with 
experimental value obtained (349.29 J/mm3), the 
relative percentage error is 1.30 %, which can be 
considered low. 

 
 

 

Figure 8. An Rules Viewer Toolbox of Ev (J/mm³) Predicted Values. 

 

Figure 9 presents mean values of Ev (J/mm³) for 
each Lp (W) and Pf (g/min) interactions. 

 
Figure 9. Mean values of Ev (J/mm3) for each Lp (W) and Pf (g/min) 
interactions. 

As the Lss was maintained constantly (5 mm/s) it 
was observed, that at lower powder flow (8.95 g/min) 
the average energy density is higher (345.23 J/mm³) 

and the opposite occurs for higher flow (13.42 g/min), 
decreasing the average energy (185.01 J/mm³). These 
results are in agreement with the work of Li et al. 
(2019) previously discussed. They found that line 
energy density (J/mm) and specific energy (J/g) 
increased at constant scanning speed (7 mm/s) 
reducing the powder feed-rate from 0.941 g/s to 0.327 
g/s representing ~34 %, in this paper this variation 
was ~33 %. However, when increased the laser power 
(W), the same occurs with the specific energy (J/g). 

Different in this paper, while powder flow is lower, 
but increasing the laser power from 225 W, 250 W and 
275 W, the mean Ev decrease from 362.52 J/mm³ to 
342.10 J/mm³ and 331.08 J/mm³, respectively. Higher 
powder flow, at the three laser power levels, the mean 
Ev presents a decreasing variation between 186.12 
J/mm³ until 180.19 J/mm³, however a lighter 
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increasing at 250 W was measured (188.72 J/mm³). 
These variations occur because in the energy formula 
was used the Bw (mm) instead hatch spacing (mm), as 
it was deposited only a single bead and not multiple 
layers as in Li et al. (2019). So, as showed in Table 5, Lp 
(w) has direct influence on Bw (mm), therefore, 
increasing the power generates larger width. 

The results of our study are also confirmed when 
compared with Ma, Wang and Zeng (2015) work. In 
their energy input analysis they kept constant the 
layer thickness – h (mm) but varying in four levels the 
laser power - P (W), the laser speed –V (mm/s) and 
the width of the cladding track – d (mm). Their results 
showed that for different increased levels of overlap 
rate (%) between two neighbor-deposited clads while 
also increasing P (W), V (mm/s) and d (mm) the Ev 
(J/mm3) decreased. The opposite occurs when higher 
overlap rates are used but maintaining constant the 
other parameters, so it means that one clad is 
deposited nearly above the other one, so width tends 
to be reduced and while P (W) doubles consequently 
the Ev increases. 

Figure 10 and Figure 11 present the 3D contour 
surface profile of the inputs interactions, such as, 
laser power, bead height, and bead width as results of 
the predictive fuzzy Ev modeling. Figure 10 shows the 
interface between laser power (W) and bead height 
(mm); and Figure 11, for laser power and bead width. 
The region with strongest colored contour indicates 
higher Ev predicted values. 

 

 
Figure 10. 3D Contoured Surface of Predicted Ev (J/mm3) Values for Lp 
(W) and Bh (mm) Interaction. 

Comparative evaluation between fuzzy based 
inference system and experiments was carried out and 
depicted in Figure 12. It is observed that good 
correlation exists between them and average error of 
volumetric energy is found to be 4.76 % which is very 
low considering the number of experiments carried 
out. Therefore, the proposed results show that the 
fuzzy inference model based on the Mamdani method 
provides an adequate prediction of the evaluated 
output variable Ev (J/mm3). 

 

 
Figure 11. 3D Contoured Surface of Predicted Ev (J/mm3) Values for Lp 
(W) and Bw (mm) Interaction 
. 

 
Figure 12. Correlation between Experimental and Fuzzy Predicted 
Values of Ev (J/mm3) 

4. Conclusions 

In this paper, a fuzzy inference-based modeling was 
developed for predicting the volumetric energy input 
Ev (J/mm3) on single AISI316 SS beads deposited by 
LMD additive manufacturing process. Taking into 
account the different process parameter operating 
levels, a factorial analysis-based DoE was performed 
for identify all possible process parameters 
combination to optimize process performance 
analysis. First of all, the effect of laser power (W), 
focal length (mm), powder flow (g/min) and laser scan 
speed (mm/s) process parameters on single beads 
height (mm) and width (mm) were individually 
evaluated. The greatest track height was 0.454 mm 
and the largest width was 0.743 mm. The higher 
energy input was reached for 410.4 J/mm3 on the 7th 
experiment at 225 W of laser power, 5 mm of focal 
length, 8.95 g/min of powder flow, 5 mm/s of laser 
scan speed, 0.199 mm of bead height and 0.551 mm of 
bead width. The lower Ev was reached on the 6th for 
169.78 J/mm3. ANOVA indicated that powder flow has 
a significant effect on Bh, and in lower manner the 
laser power and focal length. While on Bw, laser power 
has the greatest influence. The predictive fuzzy 
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inference modeling outputs are validated with the 
experimental data, which was highly satisfactory 
presenting a good correlation index in terms of the 
average percentage error of 4.76 %. Future research 
could focus on studying the influence of the energy 
density on beads dilution and deep of penetration on 
the substrate. 
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