Machine Tool 4.0 in the Era of Digital Manufacturing

  • Dimitris Mourtzis 
  • Laboratory for Manufacturing Systems and Automation, Department of Mechanical Engineering and Aeronautics, University of Patras, Rio Patras, 26504, Greece
Cite as
Mourtzis D. (2020). Machine Tool 4.0 in the Era of Digital Manufacturing. Proceedings of the 32nd European Modeling & Simulation Symposium (EMSS 2020), pp. 416-429. DOI: https://doi.org/10.46354/i3m.2020.emss.060

Abstract

Under the Industry 4.0 framework, a plethora of digital technologies and techniques has been introduced in the Manufacturing domain. Machine tools must become more intelligent, in order to create a network of fully connected machines. By extension, this will lead to the creation of the Industrial Internet of Things (IIoT). Although these technologies provide for increased functionality of the manufacturing equipment, there are certain issues/implications, refraining engineers from integrating such technologies in the production. Therefore, in this paper, the results of a systematic literature review are presented and discussed, including the horizontal and vertical integration of such digital technologies. The contribution of this paper extends to the recognition of the opportunities emerging as well as the identified implications from a practical implementation point of view.

References

  1. Benotsmane, R., Kovács, G. and Dudás, L. (2019). Economic, Social Impacts and Operation of Smart Factories in Industry 4.0 Focusing on Simulation and Artificial Intelligence of Collaborating Robots. Social Sciences, 8(5), 143. DOI: https://doi.org/10.3390/socsci8050143
  2. Bi, Z.M., Wang, L. and Lang, S.Y. (2007). Current status of reconfigurable assembly systems. IJMR, 2(3), 303-328. DOI: https://doi.org/10.1504/IJMR.2007.014727
  3. BCG Analysis (2020). Embracing Industry 4.0 and Rediscovering Growth, Available at: https://www.bcg.com/capabilities/operations/embracing-industry-4.0-rediscovering-growth.aspx (Accessed 15 October 2020)
  4. Bogue, R. (2018). Exoskeletons–a review of industrial applications. Industrial Robot: An International Journal. 45(5), 585-590, DOI: https://doi.org/10.1108/IR-05-2018-0109
  5. Bruckner, D., Stanica, M.P., Blair, R., Schriegel, S., Kehrer, S., Seewald, M. and Sauter, T. (2019). An Introduction to OPC UA TSN for Industrial Communication Systems, Proceeding of the IEEE, 107(6), 1121-1131, DOI: https://doi.org/10.1109/JPROC.2018.2888703
  6. Chen, J., Yang, J., Zhou, H., Xiang, H., Zhu, Z., Li, Y., Lee, C.H. and Xu, G. (2015). CPS Modeling of CNC Machine Tool Work Processes Using an Instruction-Domain Based Approach, Engineering, 1(2), 247-260, DOI: https://doi.org/10.15302/J-ENG-2015054
  7. Chryssolouris, G. (2006). Manufacturing Systems: Theory and Practice, 2nd ed. Springer New York, DOI: https://doi.org/10.1007/0-387-28431-1
  8. CISCO, Making Machines More Connected and Intelligent. White Paper, 2015, Available at: https://www.cisco.com/c/dam/en/us/solutions/collateral/industry- solutions/C11-735862.pdf
  9. De Looze, M. P., Bosch, T., Krause, F., Stadler, K. S., & O’Sullivan, L. W. (2016). Exoskeletons for industrial application and their potential effects on physical work load. Ergonomics, 59(5), 671-681, DOI: https://doi.org/10.1080/00140139.2015.1081988
  10. Digital Thread for Manufacturing. 2020. Available Online: https://www.steptools.com/sln/thread/ (Accessed 15 October 2020).
  11. ElMaraghy, H., Schuh, G., ElMaraghy, W., Piller, F., Schönsleben, P., Tseng, M. and Bernard, A. (2013). Product variety management. CIRP Annals – Manufacturing Technology 62 (2), 629–652. DOI: https://doi.org/10.1016/j.cirp.2013.05.007
  12. Gazzaneo, L., Padovano, A., Umbrello, S. (2020). Designing Smart Operator 4.0 for Human Values: A Value Sensitive Design Approach. Procedia Manufacturing, 42, 219-226, DOI: https://doi.org/10.1016/j.promfg.2020.02.073
  13. Gkournelos, C., Karagiannis, P., Kousi, N., Michalos, G., Koukas, S. and Makris S. (2018). Application of wearable devices for supporting operators in human-robot cooperative assembly tasks. Procedia CIRP, 76, 177-182, DOI: https://doi.org/10.1016/j.procir.2018.01.019
  14. Guerreiro, B.V., Lins, R.G., Sun, J. and Schmitt, R. (2018). Definition of Smart Retrofitting: First Steps for a Company to Deploy Aspects of Industry 4.0. Advances in Manufacturing. Lecture Notes in Mechanical Engineering: Springer, 161-170. DOI: https://doi.org/10.1007/978-3-319-68619-6_16
  15. Jeon, B., Yoon, J., Um, J. and Suh, S.H. (2020). The architecture development of Industry 4.0 compliant smart machine tool system (SMTS). Journal of Intelligent Manufacturing. DOI: https://doi.org/10.1007/s10845-020-01539-4
  16. Kagermann, H., Wahlster, W. and Helbig, J. (2013). Securing the future of German manufacturing industry: recommendations for implementing the strategic initiative INDUSTRIE 4.0. Final Rep Ind 2013. 40:1–84.
  17. Kassner, L., Hirmer, P., Wieland, M., Steimle, F., Königsberger, J. and Mitschang, B. (2017). The
    Social Factory: Connecting People, Machines and Data in Manufacturing for Context-Aware Exception Escalation. DOI: https://doi.org/10.24251/HICSS.2017.202
  18. Koren, Y. (2006). General RMS characteristics. comparison with dedicated and flexible. Reconfigurable manufacturing systems and transformable factories, 27–45, DOI: DOI: https://doi.org/10.1007/3-540-29397-3_3
  19. Koren, Y. and Shpitalni, M. (2010). Design of reconfigurable manufacturing systems. Journal of Manufacturing Systems, 29(4), 130–141. DOI: https://doi.org/10.1016/j.jmsy.2011.01.001
  20. Krugh, M. and Mears, L. (2018). A complementary cyber-human systems framework for industry 4.0 cyber-physical systems. Manufacturing Letters, 15 (part B), 89–92. DOI: https://doi.org/10.1016/j.mfglet.2018.01.003
  21. Lee, J., Bagheri, B. and Kao, H.-A. (2015). A cyber-physical systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters, 3(1), 18–23. DOI: https://doi.org/10.1016/j.mfglet.2014.12.001
  22. Liu, C., Vengayil, H., Lu, Y. and Xu, X. (2019). A Cyber-Physical Machine Tools Platform using OPC UA and MTConnect. Journal of Manufacturing Systems, 51, 61-74, DOI: https://doi.org/10.1016/j.jmsy.2019.04.006
  23. Liu, C., Vengayil H., Zhong Y. R. and Xu X. (2018). A systematic development method for cyber-physical machine tools, Journal of Manufacturing Systems, 48, 13-24, DOI: https://doi.org/10.1016/j.jmsy.2018.02.001
  24. Liu, C. and Xu X. (2017). Cyber-physical Machine Tool – The Era of Machine Tool 4.0, Procedia CIRP, 63, 70-75, DOI: https://doi.org/10.1016/j.procir.2017.03.078
  25. Lorenz M., Rüßmann M., Strack R., Lueth K. L., Bolle M. (2015). Man and Machine in Industry 4.0: How Will Technology Transform the Industrial Workforce Through 2025? THE BOSTON CONSULTING GROUP. Available Online: https://www.bcg.com/publications/2015/technology-business-transformation-engineered-products-infrastructure-man-machine-industry-4 (Accessed 15 October 2020).
  26. Lorenz M., Rüßmann M., Waldner M., Engel P., Harnisch M., Gerbert P., and Justus J. (2015b). Industry 4.0: The Future of Productivity and Growth in Manufacturing. THE BOSTON CONSULTING GROUP. Available Online: https://www.bcg.com/en-gr/publications/2015/engineered_products_project_business_industry_4_future_productivity_growth_manufacturing_industries (Accessed 15 October 2020).
  27. Lu, Y., Xu, X. and Wang, L. (2020). Smart manufacturing process and system automation – A critical review of the standards and envisioned scenarios. Journal of Manufacturing Systems, 56, 312-325, DOI: https://doi.org/10.1016/j.jmsy.2020.06.010
  28. Mahnke, W. (2020). Information Modelling with OPC Unified Architecture Basis for standardized information models. ATP edition, 3, 58-65
  29. Marcon, P., Zezulka, F., Vesely, I., Szabo, Z., Roubal, Z., Sajdl, O., Gescheidtova, E. and Dohnal, P. (2017). Communication technology for industry 4.0. Progress In Electromagnetics Research Symposium, 1694-1697, DOI: https://doi.org/10.1109/PIERS.2017.8262021
  30. Michalos, G., Makris, S., Spiliotopoulos, J., Misios, I., Tsarouchi, P., and Chryssolouris, G. (2014). ROBO-PARTNER: Seamless human-robot cooperation for intelligent, flexible and safe operations in the assembly factories of the future. Procedia CIRP, 23, 71-76. DOI: https://doi.org/10.1016/j.procir.2014.10.079
  31. Monostori, L. (2014). Cyber-physical production systems: roots, expectations and R&D challenges. Procedia CIRP, 17, 9–13, DOI: https://doi.org/10.1016/j.procir.2014.03.115
  32. Mourtzis D. (2020). Simulation in the design and operation of manufacturing systems: state of the art and new trends, International Journal of Production Research, 58:7, 1927-1949, DOI: https://doi/org/10.1080/00207543.2019.1636321
  33. Mourtzis, D., Angelopoulos, K. and Zogopoulos, V. (2019). Mapping Vulnerabilities in the Industrial Internet of Things Landscape. Procedia CIRP, 84, 265-270, DOI: https://doi.org/10.1016/j.procir.2019.04.201
  34. Mourtzis, D. and Doukas, M. (2014). The evolution of manufacturing systems: From craftsmanship to the era of customisation, Design and Management of Lean Production Systems, IGI Global, 1-29, DOI: http://dx.doi.org/10.4018/978-1-4666-5039-8
  35. Mourtzis, D, Doukas, M, Bernidaki, D. (2014). Simulation in Manufacturing: Review and Challenges. Procedia CIRP, 25, 213–229, DOI: https://doi.org/10.1016/j.procir.2014.10.032
  36. Mourtzis, D., Gargallis, A. and Zogopoulos, V. (2019). Modelling of Customer Oriented Applications in Product Lifecycle using RAMI 4.0, Procedia Manufacturing, 28, 31-36, DOI: https://doi.org/10.1016/j.promfg.2018.12.006
  37. Mourtzis, D., Milas, N. and Athinaios, N. (2018). Towards Machine Shop 4.0: A General Machine Model for CNC machine-tools through OPC-UA, Procedia CIRP, 78, 301-306, DOI: https://doi.org/10.1016/j.procir.2018.09.045
  38. Mourtzis, D., Milas, N., Vlachou, E. and Liaromatis, J. (2018). Digital transformation of structural steel manufacturing enabled by IoT-based monitoring and knowledge reuse. International Conference on Control, Decision and Information Technologies CoDIT’18. 295-301, DOI: https://doi.org/10.1109/CoDIT.2018.8394874
  39. Mourtzis, D., Siatras, V. and Zogopoulos, V. (2020). Augmented reality visualization of production scheduling and monitoring. Procedia CIRP, 88, 151-156. DOI: https://doi.org/10.1016/j.procir.2020.05.027
  40. Mourtzis, D. and Vlachou, E. (2018). A cloud-based cyber-physical system for adaptive shop-floor scheduling and condition-based maintenance, Journal of Manufacturing Systems, Volume 47, 179-198, DOI: https://doi.org/10.1016/j.jmsy.2018.05.008
  41. Mourtzis, D., Vlachou, E. and Milas N. (2016). Industrial Big Data as a result of IoT adoption in Manufacturing. CIRPe 2016, 5th CIRP Global Web Conference, Open Access Procedia CIRP, 55, 290-295, DOI: http://dx.doi.org/10.1016/j.procir.2016.07.038
  42. Nicolae, A., Korodi, A. and Silea, I. (2019). Identifying Data Dependencies as First Step to Obtain a Proactive Historian: Test Scenario in the Water Industry 4.0. Water, 11(6), DOI: https://doi.org/10.3390/w11061144
  43. Product overview of DMG MORI. 2020. Available Online: https://us.dmgmori.com/products (Accessed 15 October 2020).
  44. PWC. (2018). Workforce of the future: The competing forces shaping 2030. Available Online: https://www.pwc.com/gx/en/services/people-organisation/workforce-of-the-future/workforce-of-the-future-the-competing-forces-shaping-2030-pwc.pdf (Accessed 15 October 2020)
  45. Romero, D., Bernus, P., Noran, O., Stahre, J. and Fast-Berglund, Å. (2016). The operator 4.0: human cyber-physical systems & adaptive automation towards human-automation symbiosis work systems. IFIP international conference on advances in production management systems. Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-51133-7_80
  46. Romero, D., Stahre, J., Wuest, T., Noran, O., Bernus, P., Fast-Berglund, Å. and Gorecky, D. (2016). Towards an Operator 4.0 Typology: A Human-Centric Perspective on the Fourth Industrial Revolution Technologies, Int Conf Comput Ind Eng Proceedings.
  47. Romero, D., Wuest, T., Stahre, J. and Gorecky, D. (2017). Social Factory Architecture: Social Networking Services and Production Scenarios Through the Social Internet of Things, Services and People for the Social Operator 4.0. 265-273.DOI: http://doi.org/10.1007/978-3-319-66923-6_31
  48. SAP White Paper. (2017). Industry 4.0: What’s Next: An SAP Point of View, Available Online: https://www.iotjournaal.nl/wp-content/uploads/2018/01/Industry_4_0_What%E2%80%99s_Next.pdf (Accessed 15 October 2020)
  49. Schaeffler, DMG MORI, (2020) Available Online: https://en.dmgmori.com/products/technology-partner/schaeffler (Accessed 15 October 2020)
  50. Schmied, S., Grossmann, D., Mueller, R.K., Mathias, S.G. and Jumar, U. (2020). Creation and management of Information Models for existing production systems. AT-Automatisierungstechnik, 68(5), 325-336, DOI: https://doi.org/10.1515/auto-2020-0021
  51. SCM World/Cisco “Smart Manufacturing & the Internet of Things 2015” survey of 400 Manufacturing Business Line Executives and Plant Managers across 17 vertical industries
  52. Zezulka, F., Marcon, P., Bradac, Z., Arm, J. and Benesl, T. (2019). Time-Sensitive Networking as the Communication Future of Industry 4.0, IFAC-PapersOnLine, 52(27), 133-138, DOI: https://doi.org/10.1016/j.ifacol.2019.12.745
  53. Zhu Z. and Xu X. (2020). User-centered information provision of Cyber-Physical Machine Tools, Procedia CIRP, 93, 2020, 1546-1551, DOI: https://doi.org/10.1016/j.procir.2020.04.091