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Abstract 
The quality of freshly harvested herbs is heavily influenced by multiple factors, namely weather conditions, harvesting, 
transport, drying, storage, and many more. Our main goal here is to identify models that are able to predict spore contaminations 
on different types of herbs on the basis of these factors as well as to find optimal processing parameters, which shall lead to lower 
contaminations of herbs as well as lower costs for contamination prevention represents. 

The here presented workflow utilizes two different approaches, which in combination shall lead to a reliable contamination 
prediction and prevention mechanism. For the prediction part we learn ensembles of machine learning models using the 
processing parameters as features to predict the risk for spore contamination a priori of labor analysis data. Using tree-based 
modelling algorithms we already achieved a spore contamination prediction accuracy of 86.21% for the herb nettle.  In Addition 
to that, we use descriptive statistics to provide information on the relevant parameters which could be responsible for the 
occurred contamination. Here we already achieve a p-value smaller than 0.01 for a few processing parameters. 

In the future we want to expand this workflow by improving the modelling process using different modelling algorithms. 
Additionally, we are working on an online life system, which combine these two methods, to not only present a farmer the 
information whether a contamination is probably, but also provide him the information which processing parameters lead to a 
contamination and how they should be affected to lower the risk. 
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1. Introduction and Overview 

Even if the weather is for sure one of the most critical 
factors for the quality of nearly every raw material type 
in the agriculture sector (Sivakumar, 2007), there are 
many more variables influencing the quality during the 
whole production line. In this project, we focus mainly 
on the data-based identification of crucial factors that 
influence the quality of herbs processing, which 

reaches from the planting process to the final 
harvesting and drying procedures.  

Due to the huge number of factors which could lead 
to a contamination of the final product, it is nearly 
impossible to do an appropriate analysis without using 
data science methods. Getting knowledge about the 
relevance of agriculture factors is especially useful for 
organic farming facilities, which cannot use the same 
preventive methods as conventional farmers to inhibit 
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contaminations. If a contamination occurs, this often 
leads to very high costs for decontamination for the 
farmers, which reduces their profit. Thus, the goal is to 
avoid contamination and therefore reduce 
decontamination costs. 

Our methodology uses a combination of machine 
learning classifiers (Kotsiantis, 2007) and applied 
statistics to provide the farmers information about 
possible contaminations, but also offer 
recommendations for the right treatment to prevent 
this contamination. 

The here presented workflow detects relations 
between the documented agricultural parameters and 
the documented contaminations. Using models trained 
using machine learning, it is possible to predict the risk 
of contamination with spores such as yeast or mold. 
Additionally, we use statistical analysis to identify 
those processing parameters which are most likely to 
be responsible for spore contamination. 

2. Data 

As shown in Figure 1, the actual data used for 
preprocessing and later on for machine learning and 
statistical analysis is compiled of various information 
sources storing data about the processing of herbs on 
the one hand and the laboratory information about 
contamination of batches on the other hand. 

 
Figure 1: Structure and source of the two types of data (processing 
data; laboratory data) and how they are combined for the 
preprocessing step 

2.1. Processing Data 

To be able to evaluate significant parameters which 
have an impact on the final product quality, it is 
necessary to collect all data from the point where the 
seed is planted on the field, until the final product is 

ready to be packed. 

We have developed a survey to collect data from 60 
different farmers over two years including the 
following categories of parameter data: 

• basic data of the farmer and the field (sea level, 
field size) 

• meteorological data of the field 
• fertilization information 
• tillage information 
• visual impression of the condition of a raw material 

sample 
• post-harvest treatment parameters 
• harvesting parameters 
• drying parameters 
• weather on harvest day 

Each of these categories is documented for each 
harvested batch for which samples are analyzed by the 
laboratory to determine the spore load. The combined 
data of all these categories results in 178 different 
features including nominal, ordinal and metric data. 
These data are collected for the following raw 
materials: 

• nettle 
• peppermint 
• apple mint 
• oregano 
• dandelion 
• lemon balm 

2.2. Laboratory Analytics Data 

As ground truth information, whether there is any 
measurable contamination within the harvested crops, 
our system relies on the laboratory analysis of harvest 
samples. This analysis contains the exact number of 
spores or bacteria measured within the sample and the 
information if this value is within the legal limits. At 
the current state of our project, we use the analytics for 
spore contaminations: 

• mold 
• yeast 

3. Methods 

Each of the data samples submitted by the farmer first 
undergoes some preprocessing steps. Prediction 
models for contamination are trained using machine 
learning, and later these models can be applied on new 
samples stating whether a contamination is to be 
expected or not. Additionally, statistical analysis is 
used to recommend processing parameters by 
analyzing the values of all given parameters in samples 
without contamination versus the corresponding 
values in samples for which a contamination was 
detected. 
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3.1. Data Preprocessing 

As in nearly any data science project, especially those 
were the data is collected by a survey, we must deal with 
data quality problems such as missing-values and 
noisy data. 

These problems had to be solved twice because the 
preprocessing of the statistics part was not the same as 
the one for the data used to train machine learning-
based models. Based on mathematical operations, most 
machine learning algorithms and statistical operations 
cannot cope with verbal information as features. 
Therefore, it is necessary to map each character value 
of a feature column to unique numeric values. 

Due to the heterogeneity of the data origins, it is 
necessary to split the dataset into subsets for each 
specific raw material type. This splitting process 
results in one dataset for each raw material type. 
Another vital information gathered during the first 
stages of this project with these data was the fact that it 
is not possible to train one model which can predict all 
different contaminations correctly. The used approach 
to solve this problem was to train one model for each 
combination of contamination and raw material type. 

Even if all values of the harvest data if required to be 
entered for every batch, it is often not possible for the 
farmers due to various circumstances. This lack of 
information leads to missing values within the final 
dataset (Streiner, 2002). If there were plenty of data, it 
would be no problem to remove each data entry, which 
does not provide every required value, but this is not 
possible in our case.  

The most frequently used strategy for dealing with 
missing values is to use the information of the other 
data entries to replace the missing values with the 
mean or median of the other entries (Acock, 2005). We 
use this strategy for all numeric values. For nominal 
and ordinal datatypes, we use the median. Both 
strategies only work correctly if the amount of missing 
values for the current feature is low enough to inhibit 
the problem of bias and noise due to the inserted mean 
or median value (Acock, 2005). If a column has more 
than one-third missing values, the whole column was 
removed from the dataset. 

For an improvement of the final model quality, it is 
common to apply feature selection methods on the 
dataset. For this step, we use the correlation between 
the features to select only the ones with a low 
correlation with the rest of the features. (Hall, 1999). 
Applying this idea results in a dataset that should only 
contain features providing information for the target 
prediction, which could not be provided by the other 
features. This feature selection also includes a filter for 
features with the same value for each entry, which does 
not provide any useful information. 

For the statistical analysis, the preprocessing the 
data is grouped by every type of raw material. In 
addition to that, the data are split into contaminated 

and non-contaminated batches. This data separation 
requires on the fly filtering of the whole database and 
therefore results in a temporary dataset for each 
analysis. 

3.2. Learning Contamination Prediction Models 

The preprocessed data is used to train different 
machine learning classifiers that classify new batches 
as contaminated or not contaminated. As described in 
Chapter 4.1 theses classifiers are later used for the spore 
contamination prediction of new batches. Figure 2 
shows the pipeline for learning models using machine 
learning.  

To use as much data as possible for the training and 
to provide a reliable validation methodology, leave one 
out cross-validation represents a valid alternative to 
the more traditional training and test split method 
(Webb, 2011). I.e., each sample is in turn used as test 
sample and all others as training samples. Thus, we 
retrieve a high number of models and a good estimation 
of the achievable accuracy. 

This cross-validation modeling step is executed for 
each type of raw material and each contamination. This 
modeling process results in contamination prediction 
models for each raw material type.  

In our system, we filter the models and use only 
those that are better than baseline accuracy. This 
threshold (baseline) is calculated by calculating the 
ratio of the most frequent target value (contaminated 
or not contaminated) in all entries. Our filter requires 
the models to be at least ten percent better than this 
baseline value. 

 
Figure 2: The exact processing-workflow for training new machine 
learning models used for contamination prediction including the 
quality filter using the data described in Figure 1. 

Each model that passes this quality criterion 
becomes a part of the model pool used for the 
contamination prediction. The generated pool of 
machine learning models in the current state of our 
project is not able to predict the chance for 
contamination for every combination of raw material 
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type and contamination. Therefore, we provide a 
retrain potential into our pipeline, which results in new 
models replacing the old models, every time new 
laboratory data is received. Due to the need for the 
laboratory results for the modeling process as target 
values, each new data entry of the dataset could only be 
used for the modeling when the laboratory results 
arrived.  

Our system not only relies on one type of model for 
one combination of raw material type and 
contamination. Instead, we use two different tree-
based modelling classifiers algorithms, random forest 
(Breiman, 2001) and gradient boosting (Chen, 2016). 
For the implementation of these two different 
algorithms we use the open source programming 
language python. More specifically we use the package 
Scikit-learn, which already contains the 
implementation of random forest and xgboost with the 
standard parameter settings (Pedregosa, 2011). 

Not only the best performing model of the available 
ones can be used for contamination prediction, but it is 
also possible to treat all available models or a selection 
of them as an ensemble (Dietterich, 1995) and use the 
mean of all model predictions as final result. 

3.3. Identification of Crucial Parameters by 
Statistical Analysis 

We use hypothesis tests to extract the information, 
which of the processing parameters are responsible for 
spore contaminations. We analyze the differences of 
the distributions of the parameter values in 
contaminated samples and those in not contaminated 
samples. Depending on the data type of each processing 
parameter, the selected statistical tests calculate the 
significance of these differences between the non-
contaminated and contaminated data entries for each 
raw material type and contamination. Using a 
significance level of 5%, only the processing 
parameters below this level are selected and therefore 
regarded significant influence factors for the 
contamination. Figure 3 shows the here applied 
analysis pipeline. The hypotheses tests used in this 
project are listed in Table 1. 

Table 1: Hypothesis test methods for the different data types 

Nominal Data Pearson’s Chi Squared Test (Pearson 
1992) 

Ordinal Data Mann–Whitney U Test  
(Gooch, 2011) 

Metric Data Two Sample F-Test for testing 
variance homogeneity (Schumacker, 
2013) 

Metric Data  
(variance 
homogenous) 

Mann–Whitney U Test  
(Gooch, 2011) 

Metric Data 
(variance 
heterogenous) 

Two Sample T-Test 
(Schumacker, 2013) 

 

Figure 3: The exact processing-workflow of using hypothesis tests to 
rank the processing parameters based on their relevance using the 
data described in Figure 1.  

After the preprocessing step, the treatment data of one 
type of raw material is split into all single processing 
parameters. So, all parameters can be analyzed on their 
own. In addition to the parameter the user also can see 
to which category this parameter belongs. The 
parameters are ranked, based on the resulted p-value 
of the hypothesis tests. So, the user gets a list of all 
relevant parameters, starting with the most relevant 
one. The relevance is calculated by subtracting the p-
value from 100 and multiply this result by 100.  The 
biggest difference between this analysis and the 
recommendation system is, that this analysis only uses 
old data. The analysis always calculates on the fly using 
the current data pool of treatment data from the 
database, from which the laboratory results are 
available. The same procedure also is used for the 
recommendation after a positive prediction. 

Table 2: Listed results of different raw material contamination combinations and the different machine learning approaches. 

Contamination Material Model Number of samples TP FP TN FN ACC 

mold nettle RF 58 58.5 % 12 % 27.5 % 2 % 86.21 % 

yeast peppermint RF 64 56 % 8 % 33 % 3 % 81.25 % 

yeast peppermint xgboost 64 50 % 9.5 % 31 % 9.5 % 85.94 % 

4.  Results and Discussion 

Both methods, the statistical analysis and the machine 
learning prediction, both use always the data of one raw 
material type and contamination combination. So 
currently it is impossible to present results for all these 
combinations, a few combinations of different types of 

raw material with the most frequent contaminations 
yeast and mold are possible. 

4.1. Prediction of spore contaminations yeast and 
mold using machine learning classifiers 

In the following chapter, we present two different 
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contamination classification results, one for each type 
of contamination with different raw material types. 
The combined results of both combinations and 
different machine learning approaches are presented in 
Table 2. 

4.1.1. Prediction of mold contamination in nettle 
using random forest classification 

Trained on 58 samples of nettle batches, this random 
forest model could achieve a test accuracy of 86.21 %.  
To achieve that our implementation of random forest 
uses a lot of the standard parameters for random 
forests. The number of features used for every tree is 
the square root of the whole number of features. In 
addition to that, we set the number of trees to 51. 

As seen in Table 3, this result is quite good because 
of the small false negative and false positive rate. 
Especially, the very small false negative rate is 
noteworthy. The results also show that the prediction 
of mold in nettle achieve a bit higher accuracy than the 
prediction of yeas in peppermint (Chapter 4.1.2). 

4.1.2. Prediction of yeast contamination in 
peppermint using random forest and gradient 
boosting classification 

Unlike the example for mold prediction, this example 
of yeast prediction on peppermint data allowed the use 
of a random forest model in combination with a 
xgboost model, trained on 64 samples. The random 
forest model uses the same parameter settings as in 
Chapter 4.1.1, but the xgboost model uses a bit different 
ones. We use the same number of features per tree, but 
instead of 51 trees the number is increased to 201 trees. 
The number of samples used for every tree is set to 30% 
of all samples. 

Table 2 shows the prediction results of the two 
different tree-based approaches. With a test accuracy 
of 85,94 % the xgboost model is slightly better than the 
random forest model with 81,25 %. The prediction of 
the xgboost model is more reliable. In this case the 
previously mentioned ensemble of the two models 
would underperform with a combined test accuracy of 
78,13 % compared to the xgboost model alone with 
85,94 %. So, the best model to use is the xgboost model 
alone, not only because of the high test accuracy, also 
again because of the very small false negative rate with 
3 %. 

4.2.  Nettle processing parameter analysis for yeast 
contamination  

For the exact combination of the raw material nettle 
and the contamination yeast we achieved a very good 
parameter analysis, because of the high amount of data 
entries. This analysis results in a list of processing 
parameters that are relevant for a yeast contamination 
and can reduce the chance of yeast contamination by 
adapting those parameters. 

Although a p-value is calculated for all processing 
parameters, in the following, we just present the most 
relevant and few not relevant processing parameter 
results. The most relevant area is the feature category 
“field and crops”, more specific the part of the 
processing parameters that happen before or while the 
herb is growing.  

Table 3: List of a few processing parameters with the used hypothesis 

test, ranked based on their results (p-value). 

Parameter Category Hypothesis Test P-Value 

weed field and 
crops 

Pearson’s Chi 
Squared 

0.001 

fertilization in 
fall 

field and 
crops 

Two Sample T-Test 0.002 

preheated drying 
process 

Pearson’s Chi 
Squared 

0.004 

height of the 
plant stick 

field and 
crops 

Two Sample T-Test 0.01 

cutting device 
freshly sharped 

harvesting Pearson’s Chi 
Squared 

0.11 

sea level basic data Two Sample T-Test 0.18 

As shown in Table 3, the most relevant parameter is 
the decision whether you leave the weed on the field or 
if you remove the weed. The performed Pearson’s Chi 
Squared Test results in a p-value of 0.001. 39 out of 54 
from all the not contaminated batches leaves the weed 
on the field, while 8 out of 12 from the bad batches 
export it. 

Another very relevant “field and crops” parameter is 
the amount of fertilization in fall. With this parameter 
values the Two Sample T-Test calculated a p-value of 
0.002. On average, the good batches are fertilized more 
(26 t) than the bad batches (23.3 t). 

The third relevant parameter of this category is the 
height of the plant stick from where the plant starts 
growing. The p-value again calculated with the T-Test 
is 0.01. So, the relevance is slightly lower, but still 
significant at the level of 0.05. Here the average of all 
good batches with 6.25 cm height is a bit higher than 
the average of the bad ones with 5 cm. 

The parameter, if you preheat your dryer before 
starting drying has a calculated p-value of 0.004 using 
the Pearson’s Chi Squared Test. But this parameter 
belongs to a completely different category, the drying 
process. 43 out of 56 of all not contaminated batches 
have preheated their dryer, which is a percentage of 
around 77 %. Considering the contaminated batches 
only 8 out of 13 (62%) have preheated their dryer. 

As mentioned above, there are also a lot of 
processing parameters that are not significant for the 
yeast contamination. A small example of those 
parameters is presented. 

A slightly not significant parameter is the sharpness 
of the used cutting device. The performed Pearson’s Chi 
Squared Test results in a p-value of 0.11, so the 
parameter if your cutting device is freshly sharped, is 
not significant for a yeast contamination. 
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Another not relevant parameter is the sea level of the 

field. With a p-value of 0.18 resulting from the T-Test 
the sea level is not significant. Here the average of all 
good batches with 651m height is just a bit lower than 
the average of the bad ones with 709 m, but not 
significantly.  

5. Conclusion and Outlook 

In the current state it is already possible to organize the 
data, link the treatment data with the laboratory results 
and get some accurate prediction and recommendation 
results. 

Combining the results from the machine learning 
prediction and the statistical analysis, this is the point 
where in the future the farmers can profit. Now for the 
combination of nettle and yeast he or she can have 
accurate prediction about his current processing 
parameters and furthermore he or she gets a list which 
parameter are the most relevant for the yeast 
prediction. So, editing those parameters will lead to a 
less probably contamination and in the best case safe 
the decontamination costs. In the future this whole 
workflow should end up in an online system, which the 
farmer can use themselves and see their results and 
recommendations. 

Furthermore, the results also can improve by adding 
more machine learning methods, such as for example 
neural networks and symbolic regression. For yeast 
prediction already two different methods are used. In 
the future the number of available prediction models 
should increase. Also, the amount of data, that can be 
used for machine learning or statistical analysis, 
increases over time. So, the number of models and the 
accuracy will increase, and the relevance of the most 
relevant processing parameters increases if the still 
stay relevant with new data. 

This methodology already provides the potential to 
be used for any agricultural data and therefore has the 
potential to impact an overall reduction of 
contaminated batches actively. In further version of 
this pipeline we also want to include transfer learning 
to improve the overall quality and the amount of our 
model pool. 
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